"src/vscode:/vscode.git/clone" did not exist on "b15027636a8f88c7b3d86f88ba704df43f58e727"
unet_glide.py 19.3 KB
Newer Older
anton-l's avatar
anton-l committed
1
import torch
anton-l's avatar
anton-l committed
2
3
4
import torch.nn as nn
import torch.nn.functional as F

Patrick von Platen's avatar
Patrick von Platen committed
5
6
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
7
from .attention import AttentionBlock
8
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
9
from .resnet import Downsample, ResnetBlock, TimestepBlock, Upsample
anton-l's avatar
anton-l committed
10

anton-l's avatar
anton-l committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
83
    :param channels: number of input channels. :return: an nn.Module for normalization.
anton-l's avatar
anton-l committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
99
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
anton-l's avatar
anton-l committed
100
101
102
103
    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
Patrick von Platen's avatar
Patrick von Platen committed
104
            if isinstance(layer, TimestepBlock) or isinstance(layer, ResnetBlock):
anton-l's avatar
anton-l committed
105
106
107
108
109
110
111
112
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


Patrick von Platen's avatar
Patrick von Platen committed
113
class GlideUNetModel(ModelMixin, ConfigMixin):
anton-l's avatar
anton-l committed
114
115
116
    """
    The full UNet model with attention and timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
117
118
    :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param
    out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample.
anton-l's avatar
anton-l committed
119
    :param attention_resolutions: a collection of downsample rates at which
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
anton-l's avatar
anton-l committed
124
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
125
126
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
anton-l's avatar
anton-l committed
127
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
128
129
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
anton-l's avatar
anton-l committed
130
131
132
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
133
134
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling.
anton-l's avatar
anton-l committed
135
136
137
138
    """

    def __init__(
        self,
139
        in_channels=3,
anton-l's avatar
anton-l committed
140
        resolution=64,
141
142
143
144
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
anton-l's avatar
anton-l committed
145
146
147
148
149
150
151
152
153
154
155
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
anton-l's avatar
anton-l committed
156
        transformer_dim=None,
anton-l's avatar
anton-l committed
157
158
159
160
161
162
163
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
anton-l's avatar
anton-l committed
164
        self.resolution = resolution
anton-l's avatar
anton-l committed
165
166
167
168
169
170
171
172
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
anton-l's avatar
Style  
anton-l committed
173
        # self.dtype = torch.float16 if use_fp16 else torch.float32
anton-l's avatar
anton-l committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
198
199
                    ResnetBlock(
                        in_channels=ch,
                        out_channels=mult * model_channels,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
200
                        time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
201
                        overwrite_for_glide=True,
anton-l's avatar
anton-l committed
202
203
204
205
206
207
208
209
210
211
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
212
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
213
214
215
216
217
218
219
220
221
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
222
223
                        ResnetBlock(
                            in_channels=ch,
anton-l's avatar
anton-l committed
224
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
228
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
229
                            time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
230
                            overwrite_for_glide=True,
Patrick von Platen's avatar
Patrick von Platen committed
231
                            down=True,
anton-l's avatar
anton-l committed
232
233
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
234
235
236
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
anton-l's avatar
anton-l committed
237
238
239
240
241
242
243
244
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
249
250
            ResnetBlock(
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
251
                time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
252
                overwrite_for_glide=True,
anton-l's avatar
anton-l committed
253
254
255
256
257
258
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
259
                encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
260
            ),
Patrick von Platen's avatar
Patrick von Platen committed
261
262
263
264
265
266
            ResnetBlock(
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
267
                time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
268
                overwrite_for_glide=True,
Patrick von Platen's avatar
Patrick von Platen committed
269
            ),
anton-l's avatar
anton-l committed
270
271
272
273
274
275
276
277
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
283
284
                    ResnetBlock(
                        in_channels=ch + ich,
                        out_channels=model_channels * mult,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
285
                        time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
286
287
                        overwrite_for_glide=True,
                    ),
anton-l's avatar
anton-l committed
288
289
290
291
292
293
294
295
296
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
297
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
298
299
300
301
302
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
Patrick von Platen's avatar
Patrick von Platen committed
303
304
                        ResnetBlock(
                            in_channels=ch,
anton-l's avatar
anton-l committed
305
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
306
307
308
309
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
310
                            time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
311
                            overwrite_for_glide=True,
anton-l's avatar
anton-l committed
312
313
314
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
315
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
anton-l's avatar
anton-l committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

344
    def forward(self, x, timesteps):
anton-l's avatar
anton-l committed
345
346
347
        """
        Apply the model to an input batch.

Patrick von Platen's avatar
Patrick von Platen committed
348
349
        :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N]
        Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs.
anton-l's avatar
anton-l committed
350
        """
anton-l's avatar
anton-l committed
351
352

        hs = []
353
354
355
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
356
357
358
359
360
361
362
363
364
365
366
367
368

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


Patrick von Platen's avatar
Patrick von Platen committed
369
class GlideTextToImageUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
370
371
372
373
374
375
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

376
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
377
378
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
379
        resolution=64,
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        transformer_dim=512,
396
397
398
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
399
            resolution=resolution,
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
415
            transformer_dim=transformer_dim,
416
        )
417
        self.register_to_config(
418
            in_channels=in_channels,
anton-l's avatar
anton-l committed
419
            resolution=resolution,
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
435
            transformer_dim=transformer_dim,
436
        )
anton-l's avatar
anton-l committed
437

438
        self.transformer_proj = nn.Linear(transformer_dim, self.model_channels * 4)
anton-l's avatar
anton-l committed
439
440

    def forward(self, x, timesteps, transformer_out=None):
anton-l's avatar
anton-l committed
441
        hs = []
442
443
444
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
445
446
447
448
449

        # project the last token
        transformer_proj = self.transformer_proj(transformer_out[:, -1])
        transformer_out = transformer_out.permute(0, 2, 1)  # NLC -> NCL

450
451
        emb = emb + transformer_proj.to(emb)

anton-l's avatar
anton-l committed
452
        h = x
anton-l's avatar
anton-l committed
453
        for module in self.input_blocks:
454
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
455
            hs.append(h)
456
        h = self.middle_block(h, emb, transformer_out)
anton-l's avatar
anton-l committed
457
        for module in self.output_blocks:
anton-l's avatar
anton-l committed
458
459
            other = hs.pop()
            h = torch.cat([h, other], dim=1)
460
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
461
        return self.out(h)
anton-l's avatar
anton-l committed
462
463


Patrick von Platen's avatar
Patrick von Platen committed
464
class GlideSuperResUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
465
466
467
468
469
470
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

471
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
472
473
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
474
        resolution=256,
Patrick von Platen's avatar
Patrick von Platen committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
490
491
492
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
493
            resolution=resolution,
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
510
        self.register_to_config(
511
            in_channels=in_channels,
anton-l's avatar
anton-l committed
512
            resolution=resolution,
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
anton-l's avatar
anton-l committed
529

530
    def forward(self, x, timesteps, low_res=None):
anton-l's avatar
anton-l committed
531
532
533
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = torch.cat([x, upsampled], dim=1)
534
535

        hs = []
536
537
538
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
539
540
541
542
543
544
545
546
547
548

        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)

Patrick von Platen's avatar
Patrick von Platen committed
549
        return self.out(h)