unet_glide.py 21.2 KB
Newer Older
anton-l's avatar
anton-l committed
1
import torch
anton-l's avatar
anton-l committed
2
3
4
import torch.nn as nn
import torch.nn.functional as F

Patrick von Platen's avatar
Patrick von Platen committed
5
6
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
7
from .attention import AttentionBlock
8
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
9
from .resnet import Downsample, ResBlock, TimestepBlock, Upsample
Patrick von Platen's avatar
Patrick von Platen committed
10
from .resnet import ResnetBlock
anton-l's avatar
anton-l committed
11

anton-l's avatar
anton-l committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
84
    :param channels: number of input channels. :return: an nn.Module for normalization.
anton-l's avatar
anton-l committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
100
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
anton-l's avatar
anton-l committed
101
102
103
104
    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
Patrick von Platen's avatar
Patrick von Platen committed
105
            if isinstance(layer, TimestepBlock) or isinstance(layer, ResnetBlock):
anton-l's avatar
anton-l committed
106
107
108
109
110
111
112
113
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


Patrick von Platen's avatar
Patrick von Platen committed
114
class GlideUNetModel(ModelMixin, ConfigMixin):
anton-l's avatar
anton-l committed
115
116
117
    """
    The full UNet model with attention and timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
118
119
    :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param
    out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample.
anton-l's avatar
anton-l committed
120
    :param attention_resolutions: a collection of downsample rates at which
Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
anton-l's avatar
anton-l committed
125
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
126
127
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
anton-l's avatar
anton-l committed
128
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
129
130
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
anton-l's avatar
anton-l committed
131
132
133
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
134
135
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling.
anton-l's avatar
anton-l committed
136
137
138
139
    """

    def __init__(
        self,
140
        in_channels=3,
anton-l's avatar
anton-l committed
141
        resolution=64,
142
143
144
145
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
anton-l's avatar
anton-l committed
146
147
148
149
150
151
152
153
154
155
156
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
anton-l's avatar
anton-l committed
157
        transformer_dim=None,
anton-l's avatar
anton-l committed
158
159
160
161
162
163
164
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
anton-l's avatar
anton-l committed
165
        self.resolution = resolution
anton-l's avatar
anton-l committed
166
167
168
169
170
171
172
173
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
anton-l's avatar
Style  
anton-l committed
174
        # self.dtype = torch.float16 if use_fp16 else torch.float32
anton-l's avatar
anton-l committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#                    ResBlock(
#                        ch,
#                        time_embed_dim,
#                        dropout,
#                        out_channels=int(mult * model_channels),
#                        dims=dims,
#                        use_checkpoint=use_checkpoint,
#                        use_scale_shift_norm=use_scale_shift_norm,
#                    )
                    ResnetBlock(
                        in_channels=ch,
                        out_channels=mult * model_channels,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        time_embedding_norm="scale_shift",
                        overwrite_for_glide=True,
anton-l's avatar
anton-l committed
212
213
214
215
216
217
218
219
220
221
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
222
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
223
224
225
226
227
228
229
230
231
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237
238
239
240
241
242
243
#                        ResBlock(
#                            ch,
#                            time_embed_dim,
#                            dropout,
#                            out_channels=out_ch,
#                            dims=dims,
#                            use_checkpoint=use_checkpoint,
#                            use_scale_shift_norm=use_scale_shift_norm,
#                            down=True,
#                        )
                        ResnetBlock(
                            in_channels=ch,
anton-l's avatar
anton-l committed
244
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
249
250
251
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
                            time_embedding_norm="scale_shift",
                            overwrite_for_glide=True,
                            down=True
anton-l's avatar
anton-l committed
252
253
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
254
255
256
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
anton-l's avatar
anton-l committed
257
258
259
260
261
262
263
264
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#            ResBlock(
#                ch,
#                time_embed_dim,
#                dropout,
#                dims=dims,
#                use_checkpoint=use_checkpoint,
#                use_scale_shift_norm=use_scale_shift_norm,
#            ),
            ResnetBlock(
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                time_embedding_norm="scale_shift",
                overwrite_for_glide=True,
anton-l's avatar
anton-l committed
281
282
283
284
285
286
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
287
                encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
288
            ),
Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#            ResBlock(
#                ch,
#                time_embed_dim,
#                dropout,
#                dims=dims,
#                use_checkpoint=use_checkpoint,
#                use_scale_shift_norm=use_scale_shift_norm,
#            ),
            ResnetBlock(
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                time_embedding_norm="scale_shift",
                overwrite_for_glide=True,
            )
anton-l's avatar
anton-l committed
306
307
308
309
310
311
312
313
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#                    ResBlock(
#                        ch + ich,
#                        time_embed_dim,
#                        dropout,
#                        out_channels=int(model_channels * mult),
#                        dims=dims,
#                        use_checkpoint=use_checkpoint,
#                        use_scale_shift_norm=use_scale_shift_norm,
#                    )
                    ResnetBlock(
                        in_channels=ch + ich,
                        out_channels=model_channels * mult,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        time_embedding_norm="scale_shift",
                        overwrite_for_glide=True,
                    ),
anton-l's avatar
anton-l committed
333
334
335
336
337
338
339
340
341
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
342
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
343
344
345
346
347
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
Patrick von Platen's avatar
Patrick von Platen committed
348
349
350
351
352
353
354
355
356
357
358
359
#                        ResBlock(
#                            ch,
#                            time_embed_dim,
#                            dropout,
#                            out_channels=out_ch,
#                            dims=dims,
#                            use_checkpoint=use_checkpoint,
#                            use_scale_shift_norm=use_scale_shift_norm,
#                            up=True,
#                        )
                        ResnetBlock(
                            in_channels=ch,
anton-l's avatar
anton-l committed
360
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
364
365
366
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
                            time_embedding_norm="scale_shift",
                            overwrite_for_glide=True,
anton-l's avatar
anton-l committed
367
368
369
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
370
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
anton-l's avatar
anton-l committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

399
    def forward(self, x, timesteps):
anton-l's avatar
anton-l committed
400
401
402
        """
        Apply the model to an input batch.

Patrick von Platen's avatar
Patrick von Platen committed
403
404
        :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N]
        Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs.
anton-l's avatar
anton-l committed
405
        """
anton-l's avatar
anton-l committed
406
407

        hs = []
408
409
410
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
411
412
413
414
415
416
417
418
419
420
421
422
423

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


Patrick von Platen's avatar
Patrick von Platen committed
424
class GlideTextToImageUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
425
426
427
428
429
430
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

431
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
432
433
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
434
        resolution=64,
Patrick von Platen's avatar
Patrick von Platen committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        transformer_dim=512,
451
452
453
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
454
            resolution=resolution,
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
470
            transformer_dim=transformer_dim,
471
        )
472
        self.register_to_config(
473
            in_channels=in_channels,
anton-l's avatar
anton-l committed
474
            resolution=resolution,
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
490
            transformer_dim=transformer_dim,
491
        )
anton-l's avatar
anton-l committed
492

493
        self.transformer_proj = nn.Linear(transformer_dim, self.model_channels * 4)
anton-l's avatar
anton-l committed
494
495

    def forward(self, x, timesteps, transformer_out=None):
anton-l's avatar
anton-l committed
496
        hs = []
497
498
499
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
500
501
502
503
504

        # project the last token
        transformer_proj = self.transformer_proj(transformer_out[:, -1])
        transformer_out = transformer_out.permute(0, 2, 1)  # NLC -> NCL

505
506
        emb = emb + transformer_proj.to(emb)

anton-l's avatar
anton-l committed
507
        h = x
anton-l's avatar
anton-l committed
508
        for module in self.input_blocks:
509
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
510
            hs.append(h)
511
        h = self.middle_block(h, emb, transformer_out)
anton-l's avatar
anton-l committed
512
        for module in self.output_blocks:
anton-l's avatar
anton-l committed
513
514
            other = hs.pop()
            h = torch.cat([h, other], dim=1)
515
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
516
        return self.out(h)
anton-l's avatar
anton-l committed
517
518


Patrick von Platen's avatar
Patrick von Platen committed
519
class GlideSuperResUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
520
521
522
523
524
525
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

526
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
527
528
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
529
        resolution=256,
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
545
546
547
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
548
            resolution=resolution,
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
565
        self.register_to_config(
566
            in_channels=in_channels,
anton-l's avatar
anton-l committed
567
            resolution=resolution,
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
anton-l's avatar
anton-l committed
584

585
    def forward(self, x, timesteps, low_res=None):
anton-l's avatar
anton-l committed
586
587
588
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = torch.cat([x, upsampled], dim=1)
589
590

        hs = []
591
592
593
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
594
595
596
597
598
599
600
601
602
603

        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)

Patrick von Platen's avatar
Patrick von Platen committed
604
        return self.out(h)