"indexer.py" did not exist on "1e01b3a29617d7338081ecc14b3685a3c8261358"
scheduling_dpmsolver_multistep_inverse.py 48.1 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
18
from typing import List, Literal, Optional, Tuple, Union
19
20
21
22
23

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import randn_tensor
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
def betas_for_alpha_bar(
35
36
37
38
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
47
48
49
50
51
52
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
53
54

    Returns:
55
56
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
57
    """
YiYi Xu's avatar
YiYi Xu committed
58
    if alpha_transform_type == "cosine":
59

YiYi Xu's avatar
YiYi Xu committed
60
61
62
63
64
65
66
67
68
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
69
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
70
71
72
73
74

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
75
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
76
77
78
79
80
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
    """
81
    `DPMSolverMultistepInverseScheduler` is the reverse scheduler of [`DPMSolverMultistepScheduler`].
82

83
84
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
85
86

    Args:
87
88
89
90
91
92
93
94
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
95
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
96
97
98
99
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
100
            sampling, and `solver_order=3` for unconditional sampling.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
125
126
127
128
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
129
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
130
131
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
132
133
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
134
135
136
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
137
138
139
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
140
        variance_type (`str`, *optional*):
141
142
143
144
145
146
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
147
            An offset added to the inference steps, as required by some model families.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
169
        euler_at_final: bool = False,
170
        use_karras_sigmas: Optional[bool] = False,
171
        use_exponential_sigmas: Optional[bool] = False,
172
        use_beta_sigmas: Optional[bool] = False,
173
174
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
175
176
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
177
178
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
179
    ):
180
181
182
183
184
185
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
186
187
188
189
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)

190
191
192
193
194
195
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
196
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
197
198
199
200
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
201
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
202
203
204
205
206
207
208

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
209
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
210
211
212
213
214
215
216
217
218

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
            if algorithm_type == "deis":
                self.register_to_config(algorithm_type="dpmsolver++")
            else:
219
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
220
221
222
223
224

        if solver_type not in ["midpoint", "heun"]:
            if solver_type in ["logrho", "bh1", "bh2"]:
                self.register_to_config(solver_type="midpoint")
            else:
225
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
226
227
228
229
230
231
232

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
233
        self._step_index = None
234
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
235
        self.use_karras_sigmas = use_karras_sigmas
236
        self.use_exponential_sigmas = use_exponential_sigmas
237
        self.use_beta_sigmas = use_beta_sigmas
238

239
240
241
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
242
        The index counter for current timestep. It will increase 1 after each scheduler step.
243
244
245
        """
        return self._step_index

246
247
    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
248
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
249
250
251

        Args:
            num_inference_steps (`int`):
252
253
254
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
255
256
257
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
258
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped).item()
259
260
        self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx

Quentin Gallouédec's avatar
Quentin Gallouédec committed
261
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', "
                "'leading' or 'trailing'."
            )

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
285
286
        log_sigmas = np.log(sigmas)

287
        if self.config.use_karras_sigmas:
288
289
290
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            timesteps = timesteps.copy().astype(np.int64)
291
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
292
        elif self.config.use_exponential_sigmas:
293
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
294
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
295
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
296
        elif self.config.use_beta_sigmas:
297
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
298
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
299
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
300
301
302
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
303
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
304
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
305
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
306
307
308
309
310
311
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_max = (
                (1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]
            ) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32)
312

313
314
        self.sigmas = torch.from_numpy(sigmas)

315
316
317
318
319
        # when num_inference_steps == num_train_timesteps, we can end up with
        # duplicates in timesteps.
        _, unique_indices = np.unique(timesteps, return_index=True)
        timesteps = timesteps[np.sort(unique_indices)]

320
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
321
322
323
324
325
326
327
328

        self.num_inference_steps = len(timesteps)

        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

329
330
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
331
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
332

333
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
334
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
335
        """
336
337
        Apply dynamic thresholding to the predicted sample.

338
339
340
341
342
343
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
344
        https://huggingface.co/papers/2205.11487
345
346
347
348
349
350
351
352

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
353
354
        """
        dtype = sample.dtype
355
        batch_size, channels, *remaining_dims = sample.shape
356
357
358
359
360

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
361
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
362
363
364
365
366
367
368
369
370
371

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

372
        sample = sample.reshape(batch_size, channels, *remaining_dims)
373
374
375
376
377
378
379
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
380
        log_sigma = np.log(np.maximum(sigma, 1e-10))
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

401
402
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
403
404
405
406
407
408
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
409
410
411

        return alpha_t, sigma_t

412
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
413
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
414
415
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
430
431
432
433
434
435
436
437

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

457
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
458
459
        return sigmas

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

481
        sigmas = np.array(
482
483
484
485
486
487
488
489
490
491
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

492
493
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
    def convert_model_output(
494
        self,
495
        model_output: torch.Tensor,
496
        *args,
497
        sample: torch.Tensor = None,
498
        **kwargs,
499
    ) -> torch.Tensor:
500
        """
501
502
503
504
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

Steven Liu's avatar
Steven Liu committed
505
506
        > [!TIP] > The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both
        noise > prediction and data prediction models.
507
508

        Args:
509
            model_output (`torch.Tensor`):
510
                The direct output from the learned diffusion model.
511
            sample (`torch.Tensor`):
512
                A current instance of a sample created by the diffusion process.
513
514

        Returns:
515
            `torch.Tensor`:
516
                The converted model output.
517
        """
518
519
520
521
522
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
523
                raise ValueError("missing `sample` as a required keyword argument")
524
525
526
527
528
529
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
530
531
532
533
534
535
536

        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
537
538
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
539
540
541
542
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
543
544
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
545
                x0_pred = alpha_t * sample - sigma_t * model_output
546
547
548
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
549
550
            else:
                raise ValueError(
551
552
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
569
570
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
571
572
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
573
574
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
575
576
577
578
579
580
581
582
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
583
584
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
585
586
587
588
589
590
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

591
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
592
593
    def dpm_solver_first_order_update(
        self,
594
        model_output: torch.Tensor,
595
        *args,
596
597
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
598
        **kwargs,
599
    ) -> torch.Tensor:
600
        """
601
        One step for the first-order DPMSolver (equivalent to DDIM).
602
603

        Args:
604
            model_output (`torch.Tensor`):
605
                The direct output from the learned diffusion model.
606
            sample (`torch.Tensor`):
607
                A current instance of a sample created by the diffusion process.
608
609

        Returns:
610
            `torch.Tensor`:
611
                The sample tensor at the previous timestep.
612
        """
613
614
615
616
617
618
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
619
                raise ValueError("missing `sample` as a required keyword argument")
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

640
641
642
643
644
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
645
646
647
648
649
650
651
652
653
654
655
656
657
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                (alpha_t / alpha_s) * sample
                - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
                + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
658
659
660
            )
        return x_t

661
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
662
663
    def multistep_dpm_solver_second_order_update(
        self,
664
        model_output_list: List[torch.Tensor],
665
        *args,
666
667
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
668
        **kwargs,
669
    ) -> torch.Tensor:
670
        """
671
        One step for the second-order multistep DPMSolver.
672
673

        Args:
674
            model_output_list (`List[torch.Tensor]`):
675
                The direct outputs from learned diffusion model at current and latter timesteps.
676
            sample (`torch.Tensor`):
677
                A current instance of a sample created by the diffusion process.
678
679

        Returns:
680
            `torch.Tensor`:
681
                The sample tensor at the previous timestep.
682
        """
683
684
685
686
687
688
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
689
                raise ValueError("missing `sample` as a required keyword argument")
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

718
        m0, m1 = model_output_list[-1], model_output_list[-2]
719

720
721
722
723
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
724
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
725
726
727
728
729
730
731
732
733
734
735
736
737
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
738
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
739
740
741
742
743
744
745
746
747
748
749
750
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * (torch.exp(h) - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
783
784
785
786
787
        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
    def multistep_dpm_solver_third_order_update(
        self,
788
        model_output_list: List[torch.Tensor],
789
        *args,
790
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
791
        noise: Optional[torch.Tensor] = None,
792
        **kwargs,
793
    ) -> torch.Tensor:
794
        """
795
        One step for the third-order multistep DPMSolver.
796
797

        Args:
798
            model_output_list (`List[torch.Tensor]`):
799
                The direct outputs from learned diffusion model at current and latter timesteps.
800
            sample (`torch.Tensor`):
801
                A current instance of a sample created by diffusion process.
802
803

        Returns:
804
            `torch.Tensor`:
805
                The sample tensor at the previous timestep.
806
        """
807
808
809
810
811
812
813

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
814
                raise ValueError("missing `sample` as a required keyword argument")
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
834
        )
835
836
837
838
839
840
841
842
843
844
845
846
847

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

848
849
850
851
852
853
854
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
855
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
856
857
858
859
860
861
862
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
863
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
864
865
866
867
868
869
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (torch.exp(h) - 1.0)) * D0
                - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
StAlKeR7779's avatar
StAlKeR7779 committed
870
871
872
873
874
875
876
877
878
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
879
880
        return x_t

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

        self._step_index = step_index

900
901
    def step(
        self,
902
        model_output: torch.Tensor,
903
        timestep: Union[int, torch.Tensor],
904
        sample: torch.Tensor,
905
        generator=None,
906
        variance_noise: Optional[torch.Tensor] = None,
907
908
909
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
910
911
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.
912
913

        Args:
914
            model_output (`torch.Tensor`):
915
916
917
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
918
            sample (`torch.Tensor`):
919
                A current instance of a sample created by the diffusion process.
920
921
            generator (`torch.Generator`, *optional*):
                A random number generator.
922
            variance_noise (`torch.Tensor`):
923
924
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
925
926
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
927
928

        Returns:
929
930
931
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
932
933
934
935
936
937
938

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

939
940
941
        if self.step_index is None:
            self._init_step_index(timestep)

942
943
944
        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
            self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)
945
946
        )
        lower_order_second = (
947
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
948
949
        )

950
        model_output = self.convert_model_output(model_output, sample=sample)
951
952
953
954
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

955
        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
956
957
958
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
959
960
        elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = variance_noise
961
962
963
964
        else:
            noise = None

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
965
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
966
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
967
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
968
        else:
969
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
970
971
972
973

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

974
975
976
        # upon completion increase step index by one
        self._step_index += 1

977
978
979
980
981
982
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
983
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
984
985
986
987
988
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
989
            sample (`torch.Tensor`):
990
                The input sample.
991
992

        Returns:
993
            `torch.Tensor`:
994
                A scaled input sample.
995
996
997
998
999
        """
        return sample

    def add_noise(
        self,
1000
1001
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1002
        timesteps: torch.IntTensor,
1003
    ) -> torch.Tensor:
1004
1005
1006
1007
1008
1009
1010
1011
1012
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1013

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        step_indices = []
        for timestep in timesteps:
            index_candidates = (schedule_timesteps == timestep).nonzero()
            if len(index_candidates) == 0:
                step_index = len(schedule_timesteps) - 1
            elif len(index_candidates) > 1:
                step_index = index_candidates[1].item()
            else:
                step_index = index_candidates[0].item()
            step_indices.append(step_index)
1024

1025
1026
1027
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1028

1029
1030
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1031
1032
1033
1034
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps