scheduling_ddpm_parallel.py 33.1 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

import math
from dataclasses import dataclass
19
from typing import List, Literal, Optional, Tuple, Union
20
21
22
23
24

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
27
28
29
30
31
32
33
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
class DDPMParallelSchedulerOutput(BaseOutput):
    """
34
    Output class for the scheduler's `step` function output.
35
36

    Args:
37
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
38
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
39
            denoising loop.
40
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
41
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
42
43
44
            `pred_original_sample` can be used to preview progress or for guidance.
    """

45
46
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
47
48
49


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
50
def betas_for_alpha_bar(
51
52
53
54
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
55
56
57
58
59
60
61
62
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
63
64
65
66
67
68
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
69
70

    Returns:
71
72
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
73
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


95
96
97
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
98
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
99
100

    Args:
101
        betas (`torch.Tensor`):
102
103
104
            the betas that the scheduler is being initialized with.

    Returns:
105
        `torch.Tensor`: rescaled betas with zero terminal SNR
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


131
132
133
134
135
136
137
138
139
140
class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
141
    For more details, see the original paper: https://huggingface.co/papers/2006.11239
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
        thresholding (`bool`, default `False`):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
164
165
166
            whether to use the "dynamic thresholding" method (introduced by Imagen,
            https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
            diffusion models (such as stable-diffusion).
167
168
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
169
            (https://huggingface.co/papers/2205.11487). Valid only when `thresholding=True`.
170
171
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
172
173
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
Quentin Gallouédec's avatar
Quentin Gallouédec committed
174
            Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
175
        steps_offset (`int`, default `0`):
176
            An offset added to the inference steps, as required by some model families.
177
178
179
180
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
181
182
183
184
185
186
187
188
189
190
191
192
193
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1
    _is_ode_scheduler = False

    @register_to_config
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.__init__
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
194
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
195
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
196
197
198
        variance_type: Literal[
            "fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
        ] = "fixed_small",
199
        clip_sample: bool = True,
200
        prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
201
202
203
204
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
205
        timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
206
        steps_offset: int = 0,
207
        rescale_betas_zero_snr: bool = False,
208
209
210
211
212
213
214
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
215
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
216
217
218
219
220
221
222
223
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
        else:
224
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
225

226
227
228
229
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.custom_timesteps = False
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())

        self.variance_type = variance_type

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.scale_model_input
245
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
246
247
248
249
250
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
251
            sample (`torch.Tensor`):
252
253
254
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
255
256

        Returns:
257
            `torch.Tensor`:
258
                A scaled input sample.
259
260
261
262
263
264
265
266
267
268
269
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.set_timesteps
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
270
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
271
272

        Args:
273
274
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
275
                `timesteps` must be `None`.
276
277
278
279
280
281
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
282
283
284
285
286
287
288
289
290
291
292
293

        """
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
294
                    f"`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}."
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False

Quentin Gallouédec's avatar
Quentin Gallouédec committed
310
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

335
336
337
        self.timesteps = torch.from_numpy(timesteps).to(device)

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._get_variance
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def _get_variance(
        self,
        t: int,
        predicted_variance: Optional[torch.Tensor] = None,
        variance_type: Optional[
            Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
        ] = None,
    ) -> torch.Tensor:
        """
        Compute the variance for a given timestep according to the specified variance type.

        Args:
            t (`int`):
                The current timestep.
            predicted_variance (`torch.Tensor`, *optional*):
                The predicted variance from the model. Used only when `variance_type` is `"learned"` or
                `"learned_range"`.
            variance_type (`"fixed_small"`, `"fixed_small_log"`, `"fixed_large"`, `"fixed_large_log"`, `"learned"`, or `"learned_range"`, *optional*):
                The type of variance to compute. If `None`, uses the variance type specified in the scheduler
                configuration.

        Returns:
            `torch.Tensor`:
                The computed variance.
        """
363
364
365
366
367
368
        prev_t = self.previous_timestep(t)

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev

Quentin Gallouédec's avatar
Quentin Gallouédec committed
369
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://huggingface.co/papers/2006.11239)
370
371
372
373
374
375
376
377
378
379
380
381
382
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t

        # we always take the log of variance, so clamp it to ensure it's not 0
        variance = torch.clamp(variance, min=1e-20)

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = variance
Quentin Gallouédec's avatar
Quentin Gallouédec committed
383
        # for rl-diffuser https://huggingface.co/papers/2205.09991
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        elif variance_type == "fixed_small_log":
            variance = torch.log(variance)
            variance = torch.exp(0.5 * variance)
        elif variance_type == "fixed_large":
            variance = current_beta_t
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = torch.log(current_beta_t)
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = torch.log(variance)
            max_log = torch.log(current_beta_t)
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
403
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
404
        """
405
406
        Apply dynamic thresholding to the predicted sample.

407
408
409
410
411
412
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
413
        https://huggingface.co/papers/2205.11487
414
415
416
417
418
419
420
421

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
422
423
        """
        dtype = sample.dtype
424
        batch_size, channels, *remaining_dims = sample.shape
425
426
427
428
429

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
430
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
431
432
433
434
435
436
437
438
439
440

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

441
        sample = sample.reshape(batch_size, channels, *remaining_dims)
442
443
444
445
446
447
        sample = sample.to(dtype)

        return sample

    def step(
        self,
448
        model_output: torch.Tensor,
449
        timestep: int,
450
        sample: torch.Tensor,
451
452
453
454
455
456
457
458
        generator=None,
        return_dict: bool = True,
    ) -> Union[DDPMParallelSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
459
            model_output (`torch.Tensor`): direct output from learned diffusion model.
460
            timestep (`int`): current discrete timestep in the diffusion chain.
461
            sample (`torch.Tensor`):
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        t = timestep

        prev_t = self.previous_timestep(t)

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
490
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
512
        # See formula (7) from https://huggingface.co/papers/2006.11239
513
514
515
516
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
517
        # See formula (7) from https://huggingface.co/papers/2006.11239
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            device = model_output.device
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
538
539
540
541
            return (
                pred_prev_sample,
                pred_original_sample,
            )
542
543
544
545
546

        return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

    def batch_step_no_noise(
        self,
547
        model_output: torch.Tensor,
548
        timesteps: List[int],
549
550
        sample: torch.Tensor,
    ) -> torch.Tensor:
551
552
553
554
555
556
557
558
559
        """
        Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
        Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
        is pre-sampled by the pipeline.

        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
560
            model_output (`torch.Tensor`): direct output from learned diffusion model.
561
562
            timesteps (`List[int]`):
                current discrete timesteps in the diffusion chain. This is now a list of integers.
563
            sample (`torch.Tensor`):
564
565
566
                current instance of sample being created by diffusion process.

        Returns:
567
            `torch.Tensor`: sample tensor at previous timestep.
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        """
        t = timesteps
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = t - self.config.num_train_timesteps // num_inference_steps

        t = t.view(-1, *([1] * (model_output.ndim - 1)))
        prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            pass

        # 1. compute alphas, betas
        self.alphas_cumprod = self.alphas_cumprod.to(model_output.device)
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
        alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)

        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
593
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMParallelScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
615
        # See formula (7) from https://huggingface.co/papers/2006.11239
616
617
618
619
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
620
        # See formula (7) from https://huggingface.co/papers/2006.11239
621
622
623
624
625
626
627
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        return pred_prev_sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
628
629
        original_samples: torch.Tensor,
        noise: torch.Tensor,
630
        timesteps: torch.IntTensor,
631
    ) -> torch.Tensor:
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
648
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
649
650
651
652
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
669
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
        """
        Compute the velocity prediction from the sample and noise according to the velocity formula.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            noise (`torch.Tensor`):
                The noise tensor.
            timesteps (`torch.IntTensor`):
                The timesteps for velocity computation.

        Returns:
            `torch.Tensor`:
                The computed velocity.
        """
685
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
686
687
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
    def previous_timestep(self, timestep):
708
709
710
711
712
713
714
715
716
717
718
        """
        Compute the previous timestep in the diffusion chain.

        Args:
            timestep (`int`):
                The current timestep.

        Returns:
            `int`:
                The previous timestep.
        """
719
        if self.custom_timesteps or self.num_inference_steps:
720
721
722
723
724
725
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
726
            prev_t = timestep - 1
727
        return prev_t