scheduling_ddpm_parallel.py 30.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
27
28
29
30
31
32
33
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
class DDPMParallelSchedulerOutput(BaseOutput):
    """
34
    Output class for the scheduler's `step` function output.
35
36

    Args:
37
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
38
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
39
            denoising loop.
40
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
41
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
42
43
44
            `pred_original_sample` can be used to preview progress or for guidance.
    """

45
46
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
47
48
49


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
50
51
52
53
54
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
55
56
57
58
59
60
61
62
63
64
65
66
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
67
68
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
69
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
73
    if alpha_transform_type == "cosine":
74

YiYi Xu's avatar
YiYi Xu committed
75
76
77
78
79
80
81
82
83
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
84
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
85
86
87
88
89

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
90
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
92
93
    return torch.tensor(betas, dtype=torch.float32)


94
95
96
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
97
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
98
99

    Args:
100
        betas (`torch.Tensor`):
101
102
103
            the betas that the scheduler is being initialized with.

    Returns:
104
        `torch.Tensor`: rescaled betas with zero terminal SNR
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


130
131
132
133
134
135
136
137
138
139
class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
140
    For more details, see the original paper: https://huggingface.co/papers/2006.11239
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
        thresholding (`bool`, default `False`):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
163
164
165
            whether to use the "dynamic thresholding" method (introduced by Imagen,
            https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
            diffusion models (such as stable-diffusion).
166
167
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
168
            (https://huggingface.co/papers/2205.11487). Valid only when `thresholding=True`.
169
170
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
171
172
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
Quentin Gallouédec's avatar
Quentin Gallouédec committed
173
            Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
174
        steps_offset (`int`, default `0`):
175
            An offset added to the inference steps, as required by some model families.
176
177
178
179
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1
    _is_ode_scheduler = False

    @register_to_config
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.__init__
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
202
203
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
204
        rescale_betas_zero_snr: bool = False,
205
206
207
208
209
210
211
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
212
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
213
214
215
216
217
218
219
220
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
        else:
221
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
222

223
224
225
226
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.custom_timesteps = False
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())

        self.variance_type = variance_type

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.scale_model_input
242
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
243
244
245
246
247
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
248
            sample (`torch.Tensor`):
249
250
251
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
252
253

        Returns:
254
            `torch.Tensor`:
255
                A scaled input sample.
256
257
258
259
260
261
262
263
264
265
266
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.set_timesteps
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
267
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
268
269

        Args:
270
271
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
272
                `timesteps` must be `None`.
273
274
275
276
277
278
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
279
280
281
282
283
284
285
286
287
288
289
290

        """
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
291
                    f"`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}."
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False

Quentin Gallouédec's avatar
Quentin Gallouédec committed
307
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

332
333
334
335
336
337
338
339
340
341
        self.timesteps = torch.from_numpy(timesteps).to(device)

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._get_variance
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
        prev_t = self.previous_timestep(t)

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev

Quentin Gallouédec's avatar
Quentin Gallouédec committed
342
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://huggingface.co/papers/2006.11239)
343
344
345
346
347
348
349
350
351
352
353
354
355
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t

        # we always take the log of variance, so clamp it to ensure it's not 0
        variance = torch.clamp(variance, min=1e-20)

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = variance
Quentin Gallouédec's avatar
Quentin Gallouédec committed
356
        # for rl-diffuser https://huggingface.co/papers/2205.09991
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        elif variance_type == "fixed_small_log":
            variance = torch.log(variance)
            variance = torch.exp(0.5 * variance)
        elif variance_type == "fixed_large":
            variance = current_beta_t
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = torch.log(current_beta_t)
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = torch.log(variance)
            max_log = torch.log(current_beta_t)
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
376
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
377
378
379
380
381
382
383
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
384
        https://huggingface.co/papers/2205.11487
385
386
        """
        dtype = sample.dtype
387
        batch_size, channels, *remaining_dims = sample.shape
388
389
390
391
392

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
393
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
394
395
396
397
398
399
400
401
402
403

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

404
        sample = sample.reshape(batch_size, channels, *remaining_dims)
405
406
407
408
409
410
        sample = sample.to(dtype)

        return sample

    def step(
        self,
411
        model_output: torch.Tensor,
412
        timestep: int,
413
        sample: torch.Tensor,
414
415
416
417
418
419
420
421
        generator=None,
        return_dict: bool = True,
    ) -> Union[DDPMParallelSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
422
            model_output (`torch.Tensor`): direct output from learned diffusion model.
423
            timestep (`int`): current discrete timestep in the diffusion chain.
424
            sample (`torch.Tensor`):
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        t = timestep

        prev_t = self.previous_timestep(t)

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
453
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
475
        # See formula (7) from https://huggingface.co/papers/2006.11239
476
477
478
479
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
480
        # See formula (7) from https://huggingface.co/papers/2006.11239
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            device = model_output.device
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
501
502
503
504
            return (
                pred_prev_sample,
                pred_original_sample,
            )
505
506
507
508
509

        return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

    def batch_step_no_noise(
        self,
510
        model_output: torch.Tensor,
511
        timesteps: List[int],
512
513
        sample: torch.Tensor,
    ) -> torch.Tensor:
514
515
516
517
518
519
520
521
522
        """
        Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
        Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
        is pre-sampled by the pipeline.

        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
523
            model_output (`torch.Tensor`): direct output from learned diffusion model.
524
525
            timesteps (`List[int]`):
                current discrete timesteps in the diffusion chain. This is now a list of integers.
526
            sample (`torch.Tensor`):
527
528
529
                current instance of sample being created by diffusion process.

        Returns:
530
            `torch.Tensor`: sample tensor at previous timestep.
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        """
        t = timesteps
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = t - self.config.num_train_timesteps // num_inference_steps

        t = t.view(-1, *([1] * (model_output.ndim - 1)))
        prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            pass

        # 1. compute alphas, betas
        self.alphas_cumprod = self.alphas_cumprod.to(model_output.device)
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
        alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)

        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
556
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMParallelScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
578
        # See formula (7) from https://huggingface.co/papers/2006.11239
579
580
581
582
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
583
        # See formula (7) from https://huggingface.co/papers/2006.11239
584
585
586
587
588
589
590
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        return pred_prev_sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
591
592
        original_samples: torch.Tensor,
        noise: torch.Tensor,
593
        timesteps: torch.IntTensor,
594
    ) -> torch.Tensor:
595
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
596
597
598
599
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
616
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
617
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
618
619
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
    def previous_timestep(self, timestep):
640
        if self.custom_timesteps or self.num_inference_steps:
641
642
643
644
645
646
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
647
            prev_t = timestep - 1
648
        return prev_t