pipeline_controlnet_inpaint.py 74.4 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
24
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
25

Álvaro Somoza's avatar
Álvaro Somoza committed
26
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
from ...image_processor import PipelineImageInput, VaeImageProcessor
28
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
29
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
30
from ...models.lora import adjust_lora_scale_text_encoder
31
from ...schedulers import KarrasDiffusionSchedulers
32
33
34
35
36
37
38
39
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
40
from ...utils.torch_utils import is_compiled_module, randn_tensor
41
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
42
43
44
45
46
47
48
49
50
51
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
52
53
        >>> # !pip install transformers accelerate
        >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
54
55
56
57
        >>> from diffusers.utils import load_image
        >>> import numpy as np
        >>> import torch

58
59
60
61
62
63
64
65
66
67
68
69
        >>> init_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
        ... )
        >>> init_image = init_image.resize((512, 512))

        >>> generator = torch.Generator(device="cpu").manual_seed(1)

        >>> mask_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
        ... )
        >>> mask_image = mask_image.resize((512, 512))

70

71
72
73
74
75
76
        >>> def make_canny_condition(image):
        ...     image = np.array(image)
        ...     image = cv2.Canny(image, 100, 200)
        ...     image = image[:, :, None]
        ...     image = np.concatenate([image, image, image], axis=2)
        ...     image = Image.fromarray(image)
77
        ...     return image
78
79


80
        >>> control_image = make_canny_condition(init_image)
81

82
83
84
        >>> controlnet = ControlNetModel.from_pretrained(
        ...     "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
        ... )
85
        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
86
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
87
88
        ... )

89
        >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
90
91
92
93
        >>> pipe.enable_model_cpu_offload()

        >>> # generate image
        >>> image = pipe(
94
        ...     "a handsome man with ray-ban sunglasses",
95
        ...     num_inference_steps=20,
96
        ...     generator=generator,
97
        ...     eta=1.0,
98
99
        ...     image=init_image,
        ...     mask_image=mask_image,
100
        ...     control_image=control_image,
101
102
103
104
105
        ... ).images[0]
        ```
"""


106
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
107
108
109
110
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
111
        return encoder_output.latent_dist.sample(generator)
112
113
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
114
115
116
117
118
119
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


120
class StableDiffusionControlNetInpaintPipeline(
121
122
123
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
124
    StableDiffusionLoraLoaderMixin,
125
126
    IPAdapterMixin,
    FromSingleFileMixin,
127
):
128
    r"""
Steven Liu's avatar
Steven Liu committed
129
    Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
130

Steven Liu's avatar
Steven Liu committed
131
132
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
133

Steven Liu's avatar
Steven Liu committed
134
135
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
136
137
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
138
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
139
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
140

141
142
    <Tip>

Steven Liu's avatar
Steven Liu committed
143
    This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
Aryan's avatar
Aryan committed
144
145
146
147
148
    ([stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting))
    as well as default text-to-image Stable Diffusion checkpoints
    ([stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)).
    Default text-to-image Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on
    those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
149
150
151

    </Tip>

152
153
    Args:
        vae ([`AutoencoderKL`]):
Steven Liu's avatar
Steven Liu committed
154
155
156
157
158
159
160
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
161
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Steven Liu's avatar
Steven Liu committed
162
163
164
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
165
166
167
168
169
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
Aryan's avatar
Aryan committed
170
171
            Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for
            more details about a model's potential harms.
Steven Liu's avatar
Steven Liu committed
172
173
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
174
    """
175

176
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
177
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
178
    _exclude_from_cpu_offload = ["safety_checker"]
179
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
180
181
182
183
184
185
186
187
188
189
190

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
191
        image_encoder: CLIPVisionModelWithProjection = None,
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
224
            image_encoder=image_encoder,
225
        )
hlky's avatar
hlky committed
226
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
227
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
228
229
230
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
231
232
233
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
234
235
236
237
238
239
240
241
242
243
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
244
245
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
246
        lora_scale: Optional[float] = None,
247
        **kwargs,
248
249
250
251
252
253
254
255
256
257
258
259
260
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
261
            **kwargs,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
277
278
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
279
        lora_scale: Optional[float] = None,
280
        clip_skip: Optional[int] = None,
281
282
283
284
285
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
286
            prompt (`str` or `List[str]`, *optional*):
287
288
289
290
291
292
293
294
295
296
297
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
298
            prompt_embeds (`torch.Tensor`, *optional*):
299
300
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
301
            negative_prompt_embeds (`torch.Tensor`, *optional*):
302
303
304
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
305
            lora_scale (`float`, *optional*):
306
307
308
309
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
310
        """
311
312
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
313
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
314
315
            self._lora_scale = lora_scale

316
            # dynamically adjust the LoRA scale
317
            if not USE_PEFT_BACKEND:
318
319
320
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
321

322
323
324
325
326
327
328
329
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
330
            # textual inversion: process multi-vector tokens if necessary
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
376

377
378
379
380
381
382
383
384
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
412
            # textual inversion: process multi-vector tokens if necessary
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

440
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
441
442
443
444

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

445
        if self.text_encoder is not None:
446
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
447
448
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)
449

450
        return prompt_embeds, negative_prompt_embeds
451

452
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
453
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
454
455
456
457
458
459
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
474

475
            return image_embeds, uncond_image_embeds
476

477
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
478
    def prepare_ip_adapter_image_embeds(
479
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
480
    ):
YiYi Xu's avatar
YiYi Xu committed
481
482
483
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
484
485
486
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
487

488
489
490
491
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
492

493
494
495
496
497
498
499
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
500

YiYi Xu's avatar
YiYi Xu committed
501
                image_embeds.append(single_image_embeds[None, :])
502
                if do_classifier_free_guidance:
YiYi Xu's avatar
YiYi Xu committed
503
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
504
        else:
505
506
507
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
YiYi Xu's avatar
YiYi Xu committed
508
                    negative_image_embeds.append(single_negative_image_embeds)
509
510
                image_embeds.append(single_image_embeds)

YiYi Xu's avatar
YiYi Xu committed
511
512
513
514
515
516
517
518
519
520
521
        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
540
541
542
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

568
569
570
571
572
573
574
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
575
576
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)
577
578
579

        return timesteps, num_inference_steps - t_start

580
581
582
583
    def check_inputs(
        self,
        prompt,
        image,
584
        mask_image,
585
586
587
        height,
        width,
        callback_steps,
588
        output_type,
589
590
591
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
592
593
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
594
        controlnet_conditioning_scale=1.0,
595
596
        control_guidance_start=0.0,
        control_guidance_end=1.0,
597
        callback_on_step_end_tensor_inputs=None,
598
        padding_mask_crop=None,
599
    ):
600
        if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
601
602
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

603
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
604
605
606
607
608
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

609
610
611
612
613
614
615
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

642
643
644
645
646
647
648
649
650
651
652
653
654
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            self.check_image(image, prompt, prompt_embeds)
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
688
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

743
744
745
746
747
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

748
749
750
751
752
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
753
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
754
                raise ValueError(
755
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
756
757
                )

758
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
759
760
761
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
762
        image_is_np = isinstance(image, np.ndarray)
763
764
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
765
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
766

767
768
769
770
771
772
773
774
        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
775
            raise TypeError(
776
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
777
778
779
780
            )

        if image_is_pil:
            image_batch_size = 1
781
        else:
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
805
806
        crops_coords,
        resize_mode,
807
808
809
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
810
811
812
        image = self.control_image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        ).to(dtype=torch.float32)
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
831
832
833
834
835
836
837
838
839
840
841
842
843
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
844
845
        return_noise=False,
        return_image_latents=False,
846
    ):
847
848
849
850
851
852
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
853
854
855
856
857
858
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

859
860
861
862
863
864
        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

865
866
        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
867
868
869
870
871

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
872
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
873

874
        if latents is None:
875
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
876
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
877
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
878
879
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
880
        else:
881
882
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
883

884
885
886
887
888
889
890
891
892
        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs
893
894
895
896
897
898
899
900
901
902
903
904
905
906

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        masked_image = masked_image.to(device=device, dtype=dtype)
907
908
909
910
911

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return mask, masked_image_latents

940
941
942
943
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        if isinstance(generator, list):
            image_latents = [
944
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
945
946
947
948
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
949
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
950
951
952
953
954

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

978
979
980
981
    @property
    def interrupt(self):
        return self._interrupt

982
983
984
985
986
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
987
988
989
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
990
991
        height: Optional[int] = None,
        width: Optional[int] = None,
992
        padding_mask_crop: Optional[int] = None,
993
        strength: float = 1.0,
994
995
996
997
998
999
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1000
1001
1002
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1003
        ip_adapter_image: Optional[PipelineImageInput] = None,
1004
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1005
1006
1007
1008
1009
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
1010
1011
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
1012
        clip_skip: Optional[int] = None,
Álvaro Somoza's avatar
Álvaro Somoza committed
1013
1014
1015
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
1016
1017
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1018
1019
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1020
        The call function to the pipeline for generation.
1021
1022
1023

        Args:
            prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1024
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1025
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1026
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1027
1028
1029
1030
1031
                `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
                NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
                list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
                a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
1032
            mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1033
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1034
                `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
1035
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
Steven Liu's avatar
Steven Liu committed
1036
1037
1038
1039
                single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
                W, 1)`, or `(H, W)`.
1040
1041
            control_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`,
                    `List[List[torch.Tensor]]`, or `List[List[PIL.Image.Image]]`):
Steven Liu's avatar
Steven Liu committed
1042
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
1043
1044
1045
1046
1047
                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
Steven Liu's avatar
Steven Liu committed
1048
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1049
                The height in pixels of the generated image.
Steven Liu's avatar
Steven Liu committed
1050
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1051
                The width in pixels of the generated image.
1052
            padding_mask_crop (`int`, *optional*, defaults to `None`):
1053
1054
1055
1056
1057
1058
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
                image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
                with the same aspect ration of the image and contains all masked area, and then expand that area based
                on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
                resizing to the original image size for inpainting. This is useful when the masked area is small while
                the image is large and contain information irrelevant for inpainting, such as background.
Steven Liu's avatar
Steven Liu committed
1059
1060
1061
1062
1063
1064
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
1065
1066
1067
1068
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Steven Liu's avatar
Steven Liu committed
1069
1070
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1071
            negative_prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1072
1073
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1074
1075
1076
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1077
1078
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1079
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1080
1081
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
1082
            latents (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1083
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1084
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
Steven Liu's avatar
Steven Liu committed
1085
                tensor is generated by sampling using the supplied random `generator`.
1086
            prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1087
1088
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
1089
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1090
1091
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1092
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1093
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1094
1095
1096
1097
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
1098
            output_type (`str`, *optional*, defaults to `"pil"`):
Steven Liu's avatar
Steven Liu committed
1099
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1100
1101
1102
1103
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
1104
1105
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1106
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
Steven Liu's avatar
Steven Liu committed
1107
1108
1109
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
1110
            guess_mode (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1111
1112
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1113
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1114
                The percentage of total steps at which the ControlNet starts applying.
1115
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
Steven Liu's avatar
Steven Liu committed
1116
                The percentage of total steps at which the ControlNet stops applying.
1117
1118
1119
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Álvaro Somoza's avatar
Álvaro Somoza committed
1120
1121
1122
1123
1124
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1125
1126
1127
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1128
                `._callback_tensor_inputs` attribute of your pipeline class.
1129
1130
1131
1132
1133

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
1134
1135
1136
1137
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
1138
        """
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

Álvaro Somoza's avatar
Álvaro Somoza committed
1156
1157
1158
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

1159
1160
1161
1162
1163
1164
1165
1166
1167
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1168
1169
1170
1171
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )
1172

1173
1174
1175
1176
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
1177
            mask_image,
1178
1179
1180
            height,
            width,
            callback_steps,
1181
            output_type,
1182
1183
1184
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
1185
1186
            ip_adapter_image,
            ip_adapter_image_embeds,
1187
            controlnet_conditioning_scale,
1188
1189
            control_guidance_start,
            control_guidance_end,
1190
            callback_on_step_end_tensor_inputs,
1191
            padding_mask_crop,
1192
1193
        )

1194
1195
1196
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
1197
        self._interrupt = False
1198

1199
1200
1201
1202
1203
1204
1205
1206
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

1207
1208
1209
1210
1211
1212
1213
1214
        if padding_mask_crop is not None:
            height, width = self.image_processor.get_default_height_width(image, height, width)
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
1228
        text_encoder_lora_scale = (
1229
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1230
        )
1231
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1232
1233
1234
            prompt,
            device,
            num_images_per_prompt,
1235
            self.do_classifier_free_guidance,
1236
1237
1238
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1239
            lora_scale=text_encoder_lora_scale,
1240
            clip_skip=self.clip_skip,
1241
        )
1242
1243
1244
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
1245
        if self.do_classifier_free_guidance:
1246
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1247

1248
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1249
            image_embeds = self.prepare_ip_adapter_image_embeds(
1250
1251
1252
1253
1254
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
1255
            )
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
1267
1268
                crops_coords=crops_coords,
                resize_mode=resize_mode,
1269
                do_classifier_free_guidance=self.do_classifier_free_guidance,
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
1284
1285
                    crops_coords=crops_coords,
                    resize_mode=resize_mode,
1286
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
1287
1288
1289
1290
1291
1292
1293
1294
1295
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

1296
        # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
1297
1298
1299
1300
        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
1301
1302
        init_image = init_image.to(dtype=torch.float32)

1303
1304
1305
        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
1306
1307
1308

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape
1309

1310
1311
        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
1312
1313
1314
1315
1316
1317
1318
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0
1319
        self._num_timesteps = len(timesteps)
1320
1321
1322

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
1323
1324
1325
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4
        latents_outputs = self.prepare_latents(
1326
1327
1328
1329
1330
1331
1332
1333
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
1334
1335
1336
1337
1338
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
1339
1340
        )

1341
1342
1343
1344
1345
        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
1356
            self.do_classifier_free_guidance,
1357
1358
1359
1360
1361
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

1362
        # 7.1 Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
1363
1364
1365
1366
1367
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
1368
1369

        # 7.2 Create tensor stating which controlnets to keep
1370
        controlnet_keep = []
1371
        for i in range(len(timesteps)):
1372
            keeps = [
1373
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1374
1375
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
1376
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1377

1378
1379
1380
1381
        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
1382
1383
1384
                if self.interrupt:
                    continue

1385
                # expand the latents if we are doing classifier free guidance
1386
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1387
1388
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1389
                # controlnet(s) inference
1390
                if guess_mode and self.do_classifier_free_guidance:
1391
                    # Infer ControlNet only for the conditional batch.
1392
1393
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1394
1395
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
1396
                    control_model_input = latent_model_input
1397
1398
                    controlnet_prompt_embeds = prompt_embeds

1399
1400
1401
                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
1402
1403
1404
1405
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
1406

1407
                down_block_res_samples, mid_block_res_sample = self.controlnet(
1408
                    control_model_input,
1409
1410
1411
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
1412
                    conditioning_scale=cond_scale,
1413
1414
1415
1416
                    guess_mode=guess_mode,
                    return_dict=False,
                )

1417
                if guess_mode and self.do_classifier_free_guidance:
1418
                    # Inferred ControlNet only for the conditional batch.
1419
1420
1421
1422
1423
1424
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
1425
1426
1427
                if num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

1428
1429
1430
1431
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1432
                    cross_attention_kwargs=self.cross_attention_kwargs,
1433
1434
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
1435
                    added_cond_kwargs=added_cond_kwargs,
1436
1437
1438
1439
                    return_dict=False,
                )[0]

                # perform guidance
1440
                if self.do_classifier_free_guidance:
1441
1442
1443
1444
1445
1446
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

1447
                if num_channels_unet == 4:
1448
                    init_latents_proper = image_latents
1449
                    if self.do_classifier_free_guidance:
1450
1451
1452
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask
1453
1454

                    if i < len(timesteps) - 1:
1455
1456
1457
1458
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )
1459
1460
1461

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

1472
1473
1474
1475
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1476
1477
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1478
1479
1480
1481
1482
1483
1484
1485
1486

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
1487
1488
1489
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

1502
1503
1504
        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

1505
1506
        # Offload all models
        self.maybe_free_model_hooks()
1507
1508
1509
1510
1511

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)