pipeline_controlnet_inpaint.py 74.2 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
24
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
25

Álvaro Somoza's avatar
Álvaro Somoza committed
26
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
from ...image_processor import PipelineImageInput, VaeImageProcessor
28
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
29
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
30
from ...models.lora import adjust_lora_scale_text_encoder
31
from ...schedulers import KarrasDiffusionSchedulers
32
33
34
35
36
37
38
39
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
40
from ...utils.torch_utils import is_compiled_module, randn_tensor
41
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
42
43
44
45
46
47
48
49
50
51
52
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .multicontrolnet import MultiControlNetModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
53
54
        >>> # !pip install transformers accelerate
        >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
55
56
57
58
        >>> from diffusers.utils import load_image
        >>> import numpy as np
        >>> import torch

59
60
61
62
63
64
65
66
67
68
69
70
        >>> init_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
        ... )
        >>> init_image = init_image.resize((512, 512))

        >>> generator = torch.Generator(device="cpu").manual_seed(1)

        >>> mask_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
        ... )
        >>> mask_image = mask_image.resize((512, 512))

71

72
73
74
75
76
77
        >>> def make_canny_condition(image):
        ...     image = np.array(image)
        ...     image = cv2.Canny(image, 100, 200)
        ...     image = image[:, :, None]
        ...     image = np.concatenate([image, image, image], axis=2)
        ...     image = Image.fromarray(image)
78
        ...     return image
79
80


81
        >>> control_image = make_canny_condition(init_image)
82

83
84
85
        >>> controlnet = ControlNetModel.from_pretrained(
        ...     "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
        ... )
86
        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
87
        ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
88
89
        ... )

90
        >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
91
92
93
94
        >>> pipe.enable_model_cpu_offload()

        >>> # generate image
        >>> image = pipe(
95
        ...     "a handsome man with ray-ban sunglasses",
96
        ...     num_inference_steps=20,
97
        ...     generator=generator,
98
        ...     eta=1.0,
99
100
        ...     image=init_image,
        ...     mask_image=mask_image,
101
        ...     control_image=control_image,
102
103
104
105
106
        ... ).images[0]
        ```
"""


107
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
108
109
110
111
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
112
        return encoder_output.latent_dist.sample(generator)
113
114
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
115
116
117
118
119
120
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


121
class StableDiffusionControlNetInpaintPipeline(
122
123
124
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
125
    StableDiffusionLoraLoaderMixin,
126
127
    IPAdapterMixin,
    FromSingleFileMixin,
128
):
129
    r"""
Steven Liu's avatar
Steven Liu committed
130
    Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
131

Steven Liu's avatar
Steven Liu committed
132
133
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
134

Steven Liu's avatar
Steven Liu committed
135
136
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
137
138
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
139
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
140
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
141

142
143
    <Tip>

Steven Liu's avatar
Steven Liu committed
144
145
146
147
148
149
    This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
    ([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
    default text-to-image Stable Diffusion checkpoints
    ([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
    Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
    [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
150
151
152

    </Tip>

153
154
    Args:
        vae ([`AutoencoderKL`]):
Steven Liu's avatar
Steven Liu committed
155
156
157
158
159
160
161
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
162
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Steven Liu's avatar
Steven Liu committed
163
164
165
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
166
167
168
169
170
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
Steven Liu's avatar
Steven Liu committed
171
172
173
174
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
175
    """
176

177
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
178
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
179
    _exclude_from_cpu_offload = ["safety_checker"]
180
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
181
182
183
184
185
186
187
188
189
190
191

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
192
        image_encoder: CLIPVisionModelWithProjection = None,
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
225
            image_encoder=image_encoder,
226
227
228
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
229
230
231
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
232
233
234
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
235
236
237
238
239
240
241
242
243
244
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
245
246
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
247
        lora_scale: Optional[float] = None,
248
        **kwargs,
249
250
251
252
253
254
255
256
257
258
259
260
261
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
262
            **kwargs,
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
278
279
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
280
        lora_scale: Optional[float] = None,
281
        clip_skip: Optional[int] = None,
282
283
284
285
286
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
287
            prompt (`str` or `List[str]`, *optional*):
288
289
290
291
292
293
294
295
296
297
298
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
299
            prompt_embeds (`torch.Tensor`, *optional*):
300
301
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
302
            negative_prompt_embeds (`torch.Tensor`, *optional*):
303
304
305
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
306
            lora_scale (`float`, *optional*):
307
308
309
310
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
311
        """
312
313
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
314
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
315
316
            self._lora_scale = lora_scale

317
            # dynamically adjust the LoRA scale
318
            if not USE_PEFT_BACKEND:
319
320
321
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
322

323
324
325
326
327
328
329
330
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
331
            # textual inversion: process multi-vector tokens if necessary
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
377

378
379
380
381
382
383
384
385
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
413
            # textual inversion: process multi-vector tokens if necessary
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

441
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
442
443
444
445

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

446
        if self.text_encoder is not None:
447
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
448
449
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)
450

451
        return prompt_embeds, negative_prompt_embeds
452

453
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
454
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
455
456
457
458
459
460
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
475

476
            return image_embeds, uncond_image_embeds
477

478
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
479
    def prepare_ip_adapter_image_embeds(
480
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
481
    ):
YiYi Xu's avatar
YiYi Xu committed
482
483
484
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
485
486
487
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
488

489
490
491
492
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
493

494
495
496
497
498
499
500
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
501

YiYi Xu's avatar
YiYi Xu committed
502
                image_embeds.append(single_image_embeds[None, :])
503
                if do_classifier_free_guidance:
YiYi Xu's avatar
YiYi Xu committed
504
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
505
        else:
506
507
508
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
YiYi Xu's avatar
YiYi Xu committed
509
                    negative_image_embeds.append(single_negative_image_embeds)
510
511
                image_embeds.append(single_image_embeds)

YiYi Xu's avatar
YiYi Xu committed
512
513
514
515
516
517
518
519
520
521
522
        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
541
542
543
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

569
570
571
572
573
574
575
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
576
577
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)
578
579
580

        return timesteps, num_inference_steps - t_start

581
582
583
584
    def check_inputs(
        self,
        prompt,
        image,
585
        mask_image,
586
587
588
        height,
        width,
        callback_steps,
589
        output_type,
590
591
592
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
593
594
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
595
        controlnet_conditioning_scale=1.0,
596
597
        control_guidance_start=0.0,
        control_guidance_end=1.0,
598
        callback_on_step_end_tensor_inputs=None,
599
        padding_mask_crop=None,
600
    ):
601
        if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
602
603
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

604
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
605
606
607
608
609
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

610
611
612
613
614
615
616
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

643
644
645
646
647
648
649
650
651
652
653
654
655
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            self.check_image(image, prompt, prompt_embeds)
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
689
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

744
745
746
747
748
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

749
750
751
752
753
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
754
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
755
                raise ValueError(
756
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
757
758
                )

759
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
760
761
762
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
763
        image_is_np = isinstance(image, np.ndarray)
764
765
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
766
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
767

768
769
770
771
772
773
774
775
        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
776
            raise TypeError(
777
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
778
779
780
781
            )

        if image_is_pil:
            image_batch_size = 1
782
        else:
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
806
807
        crops_coords,
        resize_mode,
808
809
810
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
811
812
813
        image = self.control_image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        ).to(dtype=torch.float32)
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
832
833
834
835
836
837
838
839
840
841
842
843
844
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
845
846
        return_noise=False,
        return_image_latents=False,
847
    ):
848
849
850
851
852
853
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
854
855
856
857
858
859
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

860
861
862
863
864
865
        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

866
867
        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
868
869
870
871
872

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
873
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
874

875
        if latents is None:
876
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
877
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
878
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
879
880
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
881
        else:
882
883
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
884

885
886
887
888
889
890
891
892
893
        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs
894
895
896
897
898
899
900
901
902
903
904
905
906
907

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        masked_image = masked_image.to(device=device, dtype=dtype)
908
909
910
911
912

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return mask, masked_image_latents

941
942
943
944
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        if isinstance(generator, list):
            image_latents = [
945
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
946
947
948
949
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
950
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
951
952
953
954
955

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

979
980
981
982
983
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
984
985
986
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
987
988
        height: Optional[int] = None,
        width: Optional[int] = None,
989
        padding_mask_crop: Optional[int] = None,
990
        strength: float = 1.0,
991
992
993
994
995
996
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
997
998
999
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1000
        ip_adapter_image: Optional[PipelineImageInput] = None,
1001
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1002
1003
1004
1005
1006
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
1007
1008
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
1009
        clip_skip: Optional[int] = None,
Álvaro Somoza's avatar
Álvaro Somoza committed
1010
1011
1012
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
1013
1014
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1015
1016
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1017
        The call function to the pipeline for generation.
1018
1019
1020

        Args:
            prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1021
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1022
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1023
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1024
1025
1026
1027
1028
                `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
                NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
                list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
                a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
1029
            mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1030
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1031
                `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
1032
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
Steven Liu's avatar
Steven Liu committed
1033
1034
1035
1036
                single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
                W, 1)`, or `(H, W)`.
1037
1038
            control_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`,
                    `List[List[torch.Tensor]]`, or `List[List[PIL.Image.Image]]`):
Steven Liu's avatar
Steven Liu committed
1039
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
1040
1041
1042
1043
1044
                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
Steven Liu's avatar
Steven Liu committed
1045
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1046
                The height in pixels of the generated image.
Steven Liu's avatar
Steven Liu committed
1047
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1048
                The width in pixels of the generated image.
1049
            padding_mask_crop (`int`, *optional*, defaults to `None`):
1050
1051
1052
1053
1054
1055
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
                image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
                with the same aspect ration of the image and contains all masked area, and then expand that area based
                on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
                resizing to the original image size for inpainting. This is useful when the masked area is small while
                the image is large and contain information irrelevant for inpainting, such as background.
Steven Liu's avatar
Steven Liu committed
1056
1057
1058
1059
1060
1061
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
1062
1063
1064
1065
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Steven Liu's avatar
Steven Liu committed
1066
1067
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1068
            negative_prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1069
1070
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1071
1072
1073
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1074
1075
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1076
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1077
1078
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
1079
            latents (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1080
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1081
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
Steven Liu's avatar
Steven Liu committed
1082
                tensor is generated by sampling using the supplied random `generator`.
1083
            prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1084
1085
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
1086
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1087
1088
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1089
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1090
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1091
1092
1093
1094
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
1095
            output_type (`str`, *optional*, defaults to `"pil"`):
Steven Liu's avatar
Steven Liu committed
1096
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1097
1098
1099
1100
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
1101
1102
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1103
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
Steven Liu's avatar
Steven Liu committed
1104
1105
1106
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
1107
            guess_mode (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1108
1109
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1110
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1111
                The percentage of total steps at which the ControlNet starts applying.
1112
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
Steven Liu's avatar
Steven Liu committed
1113
                The percentage of total steps at which the ControlNet stops applying.
1114
1115
1116
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Álvaro Somoza's avatar
Álvaro Somoza committed
1117
1118
1119
1120
1121
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1122
1123
1124
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1125
                `._callback_tensor_inputs` attribute of your pipeline class.
1126
1127
1128
1129
1130

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
1131
1132
1133
1134
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
1135
        """
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

Álvaro Somoza's avatar
Álvaro Somoza committed
1153
1154
1155
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

1156
1157
1158
1159
1160
1161
1162
1163
1164
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1165
1166
1167
1168
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )
1169

1170
1171
1172
1173
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
1174
            mask_image,
1175
1176
1177
            height,
            width,
            callback_steps,
1178
            output_type,
1179
1180
1181
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
1182
1183
            ip_adapter_image,
            ip_adapter_image_embeds,
1184
            controlnet_conditioning_scale,
1185
1186
            control_guidance_start,
            control_guidance_end,
1187
            callback_on_step_end_tensor_inputs,
1188
            padding_mask_crop,
1189
1190
        )

1191
1192
1193
1194
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

1195
1196
1197
1198
1199
1200
1201
1202
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

1203
1204
1205
1206
1207
1208
1209
1210
        if padding_mask_crop is not None:
            height, width = self.image_processor.get_default_height_width(image, height, width)
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
1224
        text_encoder_lora_scale = (
1225
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1226
        )
1227
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1228
1229
1230
            prompt,
            device,
            num_images_per_prompt,
1231
            self.do_classifier_free_guidance,
1232
1233
1234
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1235
            lora_scale=text_encoder_lora_scale,
1236
            clip_skip=self.clip_skip,
1237
        )
1238
1239
1240
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
1241
        if self.do_classifier_free_guidance:
1242
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1243

1244
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1245
            image_embeds = self.prepare_ip_adapter_image_embeds(
1246
1247
1248
1249
1250
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
1251
            )
1252

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
1263
1264
                crops_coords=crops_coords,
                resize_mode=resize_mode,
1265
                do_classifier_free_guidance=self.do_classifier_free_guidance,
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
1280
1281
                    crops_coords=crops_coords,
                    resize_mode=resize_mode,
1282
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
1283
1284
1285
1286
1287
1288
1289
1290
1291
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

1292
        # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
1293
1294
1295
1296
        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
1297
1298
        init_image = init_image.to(dtype=torch.float32)

1299
1300
1301
        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
1302
1303
1304

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape
1305

1306
1307
        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
1308
1309
1310
1311
1312
1313
1314
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0
1315
        self._num_timesteps = len(timesteps)
1316
1317
1318

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
1319
1320
1321
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4
        latents_outputs = self.prepare_latents(
1322
1323
1324
1325
1326
1327
1328
1329
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
1330
1331
1332
1333
1334
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
1335
1336
        )

1337
1338
1339
1340
1341
        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
1352
            self.do_classifier_free_guidance,
1353
1354
1355
1356
1357
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

1358
        # 7.1 Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
1359
1360
1361
1362
1363
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
1364
1365

        # 7.2 Create tensor stating which controlnets to keep
1366
        controlnet_keep = []
1367
        for i in range(len(timesteps)):
1368
            keeps = [
1369
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1370
1371
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
1372
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1373

1374
1375
1376
1377
1378
        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
1379
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1380
1381
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1382
                # controlnet(s) inference
1383
                if guess_mode and self.do_classifier_free_guidance:
1384
                    # Infer ControlNet only for the conditional batch.
1385
1386
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1387
1388
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
1389
                    control_model_input = latent_model_input
1390
1391
                    controlnet_prompt_embeds = prompt_embeds

1392
1393
1394
                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
1395
1396
1397
1398
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
1399

1400
                down_block_res_samples, mid_block_res_sample = self.controlnet(
1401
                    control_model_input,
1402
1403
1404
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
1405
                    conditioning_scale=cond_scale,
1406
1407
1408
1409
                    guess_mode=guess_mode,
                    return_dict=False,
                )

1410
                if guess_mode and self.do_classifier_free_guidance:
1411
                    # Inferred ControlNet only for the conditional batch.
1412
1413
1414
1415
1416
1417
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
1418
1419
1420
                if num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

1421
1422
1423
1424
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1425
                    cross_attention_kwargs=self.cross_attention_kwargs,
1426
1427
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
1428
                    added_cond_kwargs=added_cond_kwargs,
1429
1430
1431
1432
                    return_dict=False,
                )[0]

                # perform guidance
1433
                if self.do_classifier_free_guidance:
1434
1435
1436
1437
1438
1439
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

1440
                if num_channels_unet == 4:
1441
                    init_latents_proper = image_latents
1442
                    if self.do_classifier_free_guidance:
1443
1444
1445
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask
1446
1447

                    if i < len(timesteps) - 1:
1448
1449
1450
1451
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )
1452
1453
1454

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

1465
1466
1467
1468
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1469
1470
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1471
1472
1473
1474
1475
1476
1477
1478
1479

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
1480
1481
1482
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

1495
1496
1497
        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

1498
1499
        # Offload all models
        self.maybe_free_model_hooks()
1500
1501
1502
1503
1504

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)