unet_ldm.py 42 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
3
from abc import abstractmethod
from inspect import isfunction
patil-suraj's avatar
patil-suraj committed
4
5
6
7
8

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
9

Patrick von Platen's avatar
Patrick von Platen committed
10

Patrick von Platen's avatar
Patrick von Platen committed
11
try:
Patrick von Platen's avatar
Patrick von Platen committed
12
    from einops import rearrange, repeat
Patrick von Platen's avatar
Patrick von Platen committed
13
14
15
except:
    print("Einops is not installed")
    pass
patil-suraj's avatar
patil-suraj committed
16
17
18

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
19
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
20
from .resnet import Upsample
patil-suraj's avatar
patil-suraj committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22

patil-suraj's avatar
patil-suraj committed
23
24
25
26
27
def exists(val):
    return val is not None


def uniq(arr):
Patrick von Platen's avatar
Patrick von Platen committed
28
    return {el: True for el in arr}.keys()
patil-suraj's avatar
patil-suraj committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
60
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
61
62
63
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


patil-suraj's avatar
cleanup  
patil-suraj committed
85
# class LinearAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#    def __init__(self, dim, heads=4, dim_head=32):
#        super().__init__()
#        self.heads = heads
#        hidden_dim = dim_head * heads
#        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
#        self.to_out = nn.Conv2d(hidden_dim, dim, 1)
#
#    def forward(self, x):
#        b, c, h, w = x.shape
#        qkv = self.to_qkv(x)
#        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
#        import ipdb; ipdb.set_trace()
#        k = k.softmax(dim=-1)
#        context = torch.einsum("bhdn,bhen->bhde", k, v)
#        out = torch.einsum("bhde,bhdn->bhen", context, q)
#        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
#        return self.to_out(out)
#

patil-suraj's avatar
cleanup  
patil-suraj committed
105
# class SpatialSelfAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#    def __init__(self, in_channels):
#        super().__init__()
#        self.in_channels = in_channels
#
#        self.norm = Normalize(in_channels)
#        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#
#    def forward(self, x):
#        h_ = x
#        h_ = self.norm(h_)
#        q = self.q(h_)
#        k = self.k(h_)
#        v = self.v(h_)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
123
# compute attention
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
#        b, c, h, w = q.shape
#        q = rearrange(q, "b c h w -> b (h w) c")
#        k = rearrange(k, "b c h w -> b c (h w)")
#        w_ = torch.einsum("bij,bjk->bik", q, k)
#
#        w_ = w_ * (int(c) ** (-0.5))
#        w_ = torch.nn.functional.softmax(w_, dim=2)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
132
# attend to values
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
138
139
140
#        v = rearrange(v, "b c h w -> b c (h w)")
#        w_ = rearrange(w_, "b i j -> b j i")
#        h_ = torch.einsum("bij,bjk->bik", v, w_)
#        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
#        h_ = self.proj_out(h_)
#
#        return x + h_
#
patil-suraj's avatar
patil-suraj committed
141

patil-suraj's avatar
cleanup  
patil-suraj committed
142

patil-suraj's avatar
patil-suraj committed
143
class CrossAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
144
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
145
146
147
148
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

Patrick von Platen's avatar
Patrick von Platen committed
149
        self.scale = dim_head**-0.5
patil-suraj's avatar
patil-suraj committed
150
151
152
153
154
155
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

Patrick von Platen's avatar
Patrick von Platen committed
156
        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
patil-suraj's avatar
patil-suraj committed
157
158
159
160
161
162
163
164
165

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

Patrick von Platen's avatar
Patrick von Platen committed
166
        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
patil-suraj's avatar
patil-suraj committed
167

Patrick von Platen's avatar
Patrick von Platen committed
168
        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
patil-suraj's avatar
patil-suraj committed
169
170

        if exists(mask):
Patrick von Platen's avatar
Patrick von Platen committed
171
            mask = rearrange(mask, "b ... -> b (...)")
patil-suraj's avatar
patil-suraj committed
172
            max_neg_value = -torch.finfo(sim.dtype).max
Patrick von Platen's avatar
Patrick von Platen committed
173
            mask = repeat(mask, "b j -> (b h) () j", h=h)
patil-suraj's avatar
patil-suraj committed
174
175
176
177
178
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

Patrick von Platen's avatar
Patrick von Platen committed
179
180
        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
patil-suraj's avatar
patil-suraj committed
181
182
183
184
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
185
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
patil-suraj's avatar
patil-suraj committed
186
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
patil-suraj's avatar
patil-suraj committed
190
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
patil-suraj's avatar
patil-suraj committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """
Patrick von Platen's avatar
Patrick von Platen committed
214
215

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
patil-suraj's avatar
patil-suraj committed
216
217
218
219
220
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

Patrick von Platen's avatar
Patrick von Platen committed
221
        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
patil-suraj's avatar
patil-suraj committed
222
223

        self.transformer_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
227
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
patil-suraj's avatar
patil-suraj committed
228
229
        )

Patrick von Platen's avatar
Patrick von Platen committed
230
        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
patil-suraj's avatar
patil-suraj committed
231
232
233
234
235
236
237

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
Patrick von Platen's avatar
Patrick von Platen committed
238
        x = rearrange(x, "b c h w -> b (h w) c")
patil-suraj's avatar
patil-suraj committed
239
240
        for block in self.transformer_blocks:
            x = block(x, context=context)
Patrick von Platen's avatar
Patrick von Platen committed
241
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
patil-suraj's avatar
patil-suraj committed
242
243
244
        x = self.proj_out(x)
        return x + x_in

Patrick von Platen's avatar
Patrick von Platen committed
245

patil-suraj's avatar
patil-suraj committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels.
    :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


## go
class AttentionPool2d(nn.Module):
    """
    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
    """

    def __init__(
        self,
        spacial_dim: int,
        embed_dim: int,
        num_heads_channels: int,
        output_dim: int = None,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
337
        self.positional_embedding = nn.Parameter(torch.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
patil-suraj's avatar
patil-suraj committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
        self.num_heads = embed_dim // num_heads_channels
        self.attention = QKVAttention(self.num_heads)

    def forward(self, x):
        b, c, *_spatial = x.shape
        x = x.reshape(b, c, -1)  # NC(HW)
        x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
        x = self.qkv_proj(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x[:, :, 0]


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb, context=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

Patrick von Platen's avatar
Patrick von Platen committed
392
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
patil-suraj's avatar
patil-suraj committed
393
394
395
396
397
398
399
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
Patrick von Platen's avatar
Patrick von Platen committed
400
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
patil-suraj's avatar
patil-suraj committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
patil-suraj's avatar
patil-suraj committed
457
458
            self.h_upd = Upsample(channels, use_conv=False, dims=dims)
            self.x_upd = Upsample(channels, use_conv=False, dims=dims)
patil-suraj's avatar
patil-suraj committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
Patrick von Platen's avatar
Patrick von Platen committed
476
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
patil-suraj's avatar
patil-suraj committed
477
478
479
480
481
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
Patrick von Platen's avatar
Patrick von Platen committed
482
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.
    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        use_new_attention_order=False,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        # split heads before split qkv
        self.attention = QKVAttentionLegacy(self.num_heads)

        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x):
        b, c, *spatial = x.shape
        x = x.reshape(b, c, -1)
        qkv = self.qkv(self.norm(x))
        h = self.attention(qkv)
        h = self.proj_out(h)
        return (x + h).reshape(b, c, *spatial)


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


def count_flops_attn(model, _x, y):
    """
    A counter for the `thop` package to count the operations in an
    attention operation.
    Meant to be used like:
        macs, params = thop.profile(
            model,
            inputs=(inputs, timestamps),
            custom_ops={QKVAttention: QKVAttention.count_flops},
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
Patrick von Platen's avatar
Patrick von Platen committed
600
    matmul_ops = 2 * b * (num_spatial**2) * c
patil-suraj's avatar
patil-suraj committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    model.total_ops += torch.DoubleTensor([matmul_ops])


class QKVAttentionLegacy(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
Patrick von Platen's avatar
Patrick von Platen committed
624
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
patil-suraj's avatar
patil-suraj committed
625
626
627
628
629
630
631
632
633
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


patil-suraj's avatar
patil-suraj committed
634
class UNetLDMModel(ModelMixin, ConfigMixin):
patil-suraj's avatar
patil-suraj committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
Patrick von Platen's avatar
Patrick von Platen committed
685
686
687
688
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=None,  # custom transformer support
        n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
patil-suraj's avatar
patil-suraj committed
689
690
691
        legacy=True,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
692

patil-suraj's avatar
patil-suraj committed
693
        # register all __init__ params with self.register
694
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
            image_size=image_size,
            in_channels=in_channels,
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            num_classes=num_classes,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
        )

        if use_spatial_transformer:
Patrick von Platen's avatar
Patrick von Platen committed
722
723
724
            assert (
                context_dim is not None
            ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
725
726

        if context_dim is not None:
Patrick von Platen's avatar
Patrick von Platen committed
727
728
729
            assert (
                use_spatial_transformer
            ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
730
731
732
733
734

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
Patrick von Platen's avatar
Patrick von Platen committed
735
            assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
736
737

        if num_head_channels == -1:
Patrick von Platen's avatar
Patrick von Platen committed
738
            assert num_heads != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
739
740
741
742
743
744
745
746
747
748
749
750

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
patil-suraj's avatar
patil-suraj committed
751
        self.dtype_ = torch.float16 if use_fp16 else torch.float32
patil-suraj's avatar
patil-suraj committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
768
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
795
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
796
797
798
799
800
801
802
803
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
804
805
806
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
Patrick von Platen's avatar
Patrick von Platen committed
828
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
patil-suraj's avatar
patil-suraj committed
829
830
831
832
833
834
835
836
837
838
839
840
841
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
842
            # num_heads = 1
patil-suraj's avatar
patil-suraj committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
859
860
861
            )
            if not use_spatial_transformer
            else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
patil-suraj's avatar
patil-suraj committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
896
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
897
898
899
900
901
902
903
904
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
905
906
907
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
925
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
patil-suraj's avatar
patil-suraj committed
926
927
928
929
930
931
932
933
934
935
936
937
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
Patrick von Platen's avatar
Patrick von Platen committed
938
939
940
941
                normalization(ch),
                conv_nd(dims, model_channels, n_embed, 1),
                # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
            )
patil-suraj's avatar
patil-suraj committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

Patrick von Platen's avatar
Patrick von Platen committed
959
    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
patil-suraj's avatar
patil-suraj committed
960
961
962
963
964
965
966
967
968
969
970
971
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
patil-suraj's avatar
patil-suraj committed
972
973
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
974
        t_emb = get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
patil-suraj's avatar
patil-suraj committed
975
976
977
978
979
980
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

patil-suraj's avatar
patil-suraj committed
981
        h = x.type(self.dtype_)
patil-suraj's avatar
patil-suraj committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)


class EncoderUNetModel(nn.Module):
    """
    The half UNet model with attention and timestep embedding.
    For usage, see UNet.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        pool="adaptive",
        *args,
Patrick von Platen's avatar
Patrick von Platen committed
1024
        **kwargs,
patil-suraj's avatar
patil-suraj committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.dtype = torch.float16 if use_fp16 else torch.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1053
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                            use_new_attention_order=use_new_attention_order,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
Patrick von Platen's avatar
Patrick von Platen committed
1101
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
patil-suraj's avatar
patil-suraj committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                use_new_attention_order=use_new_attention_order,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch
        self.pool = pool
        if pool == "adaptive":
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                nn.AdaptiveAvgPool2d((1, 1)),
                zero_module(conv_nd(dims, ch, out_channels, 1)),
                nn.Flatten(),
            )
        elif pool == "attention":
            assert num_head_channels != -1
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
Patrick von Platen's avatar
Patrick von Platen committed
1149
                AttentionPool2d((image_size // ds), ch, num_head_channels, out_channels),
patil-suraj's avatar
patil-suraj committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
            )
        elif pool == "spatial":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                nn.ReLU(),
                nn.Linear(2048, self.out_channels),
            )
        elif pool == "spatial_v2":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                normalization(2048),
                nn.SiLU(),
                nn.Linear(2048, self.out_channels),
            )
        else:
            raise NotImplementedError(f"Unexpected {pool} pooling")

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)

    def forward(self, x, timesteps):
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :return: an [N x K] Tensor of outputs.
        """
1188
1189
1190
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
patil-suraj's avatar
patil-suraj committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

        results = []
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            if self.pool.startswith("spatial"):
                results.append(h.type(x.dtype).mean(dim=(2, 3)))
        h = self.middle_block(h, emb)
        if self.pool.startswith("spatial"):
            results.append(h.type(x.dtype).mean(dim=(2, 3)))
            h = torch.cat(results, axis=-1)
            return self.out(h)
        else:
            h = h.type(x.dtype)
            return self.out(h)