lora_pipeline.py 232 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14

15
16
17
18
import os
from typing import Callable, Dict, List, Optional, Union

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
22

from ..utils import (
    USE_PEFT_BACKEND,
23
    deprecate,
24
    get_submodule_by_name,
hlky's avatar
hlky committed
25
26
    is_bitsandbytes_available,
    is_gguf_available,
27
    is_peft_available,
28
    is_peft_version,
29
    is_torch_version,
30
    is_transformers_available,
31
    is_transformers_version,
32
33
    logging,
)
34
35
36
37
38
39
from .lora_base import (  # noqa
    LORA_WEIGHT_NAME,
    LORA_WEIGHT_NAME_SAFE,
    LoraBaseMixin,
    _fetch_state_dict,
    _load_lora_into_text_encoder,
40
    _pack_dict_with_prefix,
41
)
42
from .lora_conversion_utils import (
Aryan's avatar
Aryan committed
43
    _convert_bfl_flux_control_lora_to_diffusers,
44
    _convert_fal_kontext_lora_to_diffusers,
45
    _convert_hunyuan_video_lora_to_diffusers,
46
    _convert_kohya_flux_lora_to_diffusers,
47
    _convert_musubi_wan_lora_to_diffusers,
Sayak Paul's avatar
Sayak Paul committed
48
    _convert_non_diffusers_flux2_lora_to_diffusers,
49
    _convert_non_diffusers_hidream_lora_to_diffusers,
50
    _convert_non_diffusers_lora_to_diffusers,
51
    _convert_non_diffusers_ltxv_lora_to_diffusers,
52
    _convert_non_diffusers_lumina2_lora_to_diffusers,
53
    _convert_non_diffusers_qwen_lora_to_diffusers,
54
    _convert_non_diffusers_wan_lora_to_diffusers,
55
    _convert_non_diffusers_z_image_lora_to_diffusers,
56
57
58
    _convert_xlabs_flux_lora_to_diffusers,
    _maybe_map_sgm_blocks_to_diffusers,
)
59
60


61
62
63
64
65
66
67
68
69
70
71
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
    if (
        is_peft_available()
        and is_peft_version(">=", "0.13.1")
        and is_transformers_available()
        and is_transformers_version(">", "4.45.2")
    ):
        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True


72
73
74
75
logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
Will Berman's avatar
Will Berman committed
76
TRANSFORMER_NAME = "transformer"
77

Aryan's avatar
Aryan committed
78
79
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}

80

hlky's avatar
hlky committed
81
82
83
84
85
86
87
88
def _maybe_dequantize_weight_for_expanded_lora(model, module):
    if is_bitsandbytes_available():
        from ..quantizers.bitsandbytes import dequantize_bnb_weight

    if is_gguf_available():
        from ..quantizers.gguf.utils import dequantize_gguf_tensor

    is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
89
    is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
hlky's avatar
hlky committed
90
91
92
93
94
95
    is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"

    if is_bnb_4bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
        )
96
97
98
99
    if is_bnb_8bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
        )
hlky's avatar
hlky committed
100
101
102
103
104
105
    if is_gguf_quantized and not is_gguf_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
        )

    weight_on_cpu = False
106
    if module.weight.device.type == "cpu":
hlky's avatar
hlky committed
107
108
        weight_on_cpu = True

109
    device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
110
    if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
hlky's avatar
hlky committed
111
        module_weight = dequantize_bnb_weight(
112
            module.weight.to(device) if weight_on_cpu else module.weight,
113
            state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
hlky's avatar
hlky committed
114
115
116
117
            dtype=model.dtype,
        ).data
    elif is_gguf_quantized:
        module_weight = dequantize_gguf_tensor(
118
            module.weight.to(device) if weight_on_cpu else module.weight,
hlky's avatar
hlky committed
119
120
121
122
123
124
125
126
127
128
129
        )
        module_weight = module_weight.to(model.dtype)
    else:
        module_weight = module.weight.data

    if weight_on_cpu:
        module_weight = module_weight.cpu()

    return module_weight


130
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
131
    r"""
132
    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
133
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
134
    """
135

136
    _lora_loadable_modules = ["unet", "text_encoder"]
137
    unet_name = UNET_NAME
138
    text_encoder_name = TEXT_ENCODER_NAME
139
140

    def load_lora_weights(
141
142
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
143
        adapter_name: Optional[str] = None,
144
145
        hotswap: bool = False,
        **kwargs,
146
    ):
147
        """Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
148
149
150
151
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

152
153
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
154

155
156
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
157

158
159
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
160
161
162

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
163
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
164
            adapter_name (`str`, *optional*):
165
166
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
167
168
169
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
170
            hotswap (`bool`, *optional*):
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
                in-place. This means that, instead of loading an additional adapter, this will take the existing
                adapter weights and replace them with the weights of the new adapter. This can be faster and more
                memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
                torch.compile, loading the new adapter does not require recompilation of the model. When using
                hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.

                If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
                to call an additional method before loading the adapter:

                ```py
                pipeline = ...  # load diffusers pipeline
                max_rank = ...  # the highest rank among all LoRAs that you want to load
                # call *before* compiling and loading the LoRA adapter
                pipeline.enable_lora_hotswap(target_rank=max_rank)
                pipeline.load_lora_weights(file_name)
                # optionally compile the model now
                ```

                Note that hotswapping adapters of the text encoder is not yet supported. There are some further
                limitations to this technique, which are documented here:
                https://huggingface.co/docs/peft/main/en/package_reference/hotswap
193
194
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
195
        """
196
197
198
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

199
200
201
202
203
204
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

205
206
207
208
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

209
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
210
211
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
212

Sayak Paul's avatar
Sayak Paul committed
213
        is_correct_format = all("lora" in key for key in state_dict.keys())
214
215
216
217
218
219
220
221
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            adapter_name=adapter_name,
222
            metadata=metadata,
223
            _pipeline=self,
224
            low_cpu_mem_usage=low_cpu_mem_usage,
225
            hotswap=hotswap,
226
227
228
229
230
231
232
233
234
235
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
            _pipeline=self,
236
            metadata=metadata,
237
            low_cpu_mem_usage=low_cpu_mem_usage,
238
            hotswap=hotswap,
239
240
241
        )

    @classmethod
242
    @validate_hf_hub_args
243
244
245
246
247
248
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
249
250
        Return state dict for lora weights and the network alphas.

Steven Liu's avatar
Steven Liu committed
251
252
        > [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
        experimental and might change in the future.
253
254
255
256
257
258
259

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
260
261
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
262
263
264
265
266
267
268
269
270
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
271

272
273
274
275
276
277
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
278
            token (`str` or *bool*, *optional*):
279
280
281
282
283
284
285
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
286
287
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
288
289
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
290
291
292
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
293
        cache_dir = kwargs.pop("cache_dir", None)
294
295
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
296
297
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
298
299
300
301
302
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
303
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
304
305
306
307
308
309

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

310
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
311

312
        state_dict, metadata = _fetch_state_dict(
313
314
315
316
317
318
319
320
321
322
323
324
325
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
326
327
328
329
330
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
346
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
347
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
348

349
350
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
351
352

    @classmethod
353
    def load_lora_into_unet(
354
355
356
357
358
359
360
361
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
362
        metadata=None,
363
    ):
364
        """
365
        This will load the LoRA layers specified in `state_dict` into `unet`.
366
367
368

        Parameters:
            state_dict (`dict`):
369
370
371
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
372
            network_alphas (`Dict[str, float]`):
373
374
375
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
376
377
378
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
379
380
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
381
382
383
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
384
385
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
386
387
388
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
389
        """
390
391
392
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

393
394
395
396
397
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

398
399
400
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
401
402
403
404
405
406
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
407
            metadata=metadata,
408
409
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
410
            hotswap=hotswap,
411
        )
412

413
414
415
416
417
418
419
420
421
422
    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
423
        low_cpu_mem_usage=False,
424
        hotswap: bool = False,
425
        metadata=None,
426
427
428
429
430
431
432
433
434
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
435
436
437
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
438
439
440
441
442
443
444
445
446
447
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
448
449
450
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
451
452
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
453
454
455
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
456
        """
457
458
459
460
461
462
463
464
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
465
            metadata=metadata,
466
467
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
468
            hotswap=hotswap,
469
        )
470

471
472
473
474
475
476
477
478
479
480
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
481
482
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
483
484
    ):
        r"""
485
        Save the LoRA parameters corresponding to the UNet and text encoder.
486
487
488

        Arguments:
            save_directory (`str` or `os.PathLike`):
489
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
490
491
492
493
494
495
496
497
498
499
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
500
501
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
502
503
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
504
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
505
506
507
508
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
509
        """
510
511
        lora_layers = {}
        lora_metadata = {}
512

513
        if unet_lora_layers:
514
515
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
516

517
        if text_encoder_lora_layers:
518
519
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Will Berman's avatar
Will Berman committed
520

521
522
        if not lora_layers:
            raise ValueError("You must pass at least one of `unet_lora_layers` or `text_encoder_lora_layers`.")
523

524
        cls._save_lora_weights(
525
            save_directory=save_directory,
526
527
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
528
529
530
531
532
533
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

534
535
    def fuse_lora(
        self,
536
        components: List[str] = ["unet", "text_encoder"],
537
538
539
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
540
        **kwargs,
541
542
543
544
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

Steven Liu's avatar
Steven Liu committed
545
        > [!WARNING] > This is an experimental API.
546
547

        Args:
548
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
569
        super().fuse_lora(
570
571
572
573
574
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
575
        )
576

577
    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
578
579
        r"""
        Reverses the effect of
580
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
581

Steven Liu's avatar
Steven Liu committed
582
        > [!WARNING] > This is an experimental API.
583
584

        Args:
585
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
586
587
588
589
590
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
591
        super().unfuse_lora(components=components, **kwargs)
592
593


594
595
596
597
598
599
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
    """
600

601
602
603
    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
    unet_name = UNET_NAME
    text_encoder_name = TEXT_ENCODER_NAME
604

605
606
607
608
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
609
        hotswap: bool = False,
610
611
612
        **kwargs,
    ):
        """
613
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
614
        """
615
616
617
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

618
619
620
621
622
623
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

624
625
626
627
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

628
629
630
631
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

632
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
633
634
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
635
636
637
638
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
Sayak Paul's avatar
Sayak Paul committed
639
640

        is_correct_format = all("lora" in key for key in state_dict.keys())
641
642
643
644
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
645
646
647
648
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            adapter_name=adapter_name,
649
            metadata=metadata,
650
651
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
652
            hotswap=hotswap,
653
        )
654
655
656
657
658
659
660
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
661
            metadata=metadata,
662
663
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
664
            hotswap=hotswap,
665
666
667
668
669
670
671
672
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
673
            metadata=metadata,
674
675
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
676
            hotswap=hotswap,
677
        )
678
679

    @classmethod
680
681
682
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
683
684
685
686
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
687
        r"""
688
        Return state dict for lora weights and the network alphas.
689

Steven Liu's avatar
Steven Liu committed
690
691
        > [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
        experimental and might change in the future.
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
725
726
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
727
728
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
729
730
731
732
733
734
735
736
737
738
739
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
740
        unet_config = kwargs.pop("unet_config", None)
741
        use_safetensors = kwargs.pop("use_safetensors", None)
742
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Dhruv Nair's avatar
Dhruv Nair committed
743

744
745
746
747
748
        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

749
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
750

751
        state_dict, metadata = _fetch_state_dict(
752
753
754
755
756
757
758
759
760
761
762
763
764
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
765
766
767
768
769
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)

788
789
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
790
791
792

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
793
    def load_lora_into_unet(
794
795
796
797
798
799
800
801
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
802
        metadata=None,
803
    ):
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
821
822
823
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
824
825
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
826
827
828
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
829
830
831
832
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

833
834
835
836
837
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

838
839
840
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
841
842
843
844
845
846
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
847
            metadata=metadata,
848
849
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
850
            hotswap=hotswap,
851
        )
852
853
854
855
856
857
858
859
860
861
862
863

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
864
        low_cpu_mem_usage=False,
865
        hotswap: bool = False,
866
        metadata=None,
867
868
869
870
871
872
873
874
875
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
876
877
878
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
879
880
881
882
883
884
885
886
887
888
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
889
890
891
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
892
893
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
894
895
896
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
897
        """
898
899
900
901
902
903
904
905
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
906
            metadata=metadata,
907
908
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
909
            hotswap=hotswap,
910
        )
911
912
913
914
915
916
917
918
919
920
921
922

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
923
924
925
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
926
927
    ):
        r"""
928
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
929
        """
930
931
        lora_layers = {}
        lora_metadata = {}
932
933

        if unet_lora_layers:
934
935
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
936
937

        if text_encoder_lora_layers:
938
939
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
940
941

        if text_encoder_2_lora_layers:
942
943
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
944

945
946
947
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
948
949
            )

950
        cls._save_lora_weights(
951
            save_directory=save_directory,
952
953
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
969
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
970
971
        """
        super().fuse_lora(
972
973
974
975
976
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
977
978
979
980
        )

    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
981
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
982
        """
983
        super().unfuse_lora(components=components, **kwargs)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006


class SD3LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SD3Transformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1007
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1020
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1021
1022
1023
1024
1025
1026

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1027
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1028

1029
        state_dict, metadata = _fetch_state_dict(
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
1044
1045
1046
1047
1048
1049
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1050
1051
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1052
1053

    def load_lora_weights(
1054
1055
1056
1057
1058
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name=None,
        hotswap: bool = False,
        **kwargs,
1059
1060
    ):
        """
1061
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1062
1063
1064
1065
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1066
1067
1068
1069
1070
1071
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1072
1073
1074
1075
1076
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1077
1078
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1079

Sayak Paul's avatar
Sayak Paul committed
1080
        is_correct_format = all("lora" in key for key in state_dict.keys())
1081
1082
1083
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

1084
1085
1086
1087
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1088
            metadata=metadata,
1089
1090
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1091
            hotswap=hotswap,
1092
1093
1094
1095
1096
1097
1098
1099
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1100
            metadata=metadata,
1101
1102
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1103
            hotswap=hotswap,
1104
1105
1106
1107
1108
1109
1110
1111
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1112
            metadata=metadata,
1113
1114
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1115
            hotswap=hotswap,
1116
        )
1117
1118

    @classmethod
1119
    def load_lora_into_transformer(
1120
1121
1122
1123
1124
1125
1126
1127
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1128
    ):
1129
        """
1130
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1131
        """
1132
1133
1134
1135
1136
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1137
1138
1139
1140
1141
1142
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1143
            metadata=metadata,
1144
1145
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1146
            hotswap=hotswap,
1147
        )
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1160
        low_cpu_mem_usage=False,
1161
        hotswap: bool = False,
1162
        metadata=None,
1163
1164
1165
1166
1167
1168
1169
1170
1171
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1172
1173
1174
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1185
1186
1187
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1188
1189
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1190
1191
1192
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1193
        """
1194
1195
1196
1197
1198
1199
1200
1201
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1202
            metadata=metadata,
1203
1204
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1205
            hotswap=hotswap,
1206
        )
1207
1208

    @classmethod
1209
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.save_lora_weights with unet->transformer
1210
1211
1212
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
1213
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1214
1215
1216
1217
1218
1219
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1220
1221
1222
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
1223
1224
    ):
        r"""
1225
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1226
        """
1227
1228
        lora_layers = {}
        lora_metadata = {}
1229
1230

        if transformer_lora_layers:
1231
1232
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1233
1234

        if text_encoder_lora_layers:
1235
1236
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
1237
1238

        if text_encoder_2_lora_layers:
1239
1240
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
1241

1242
1243
1244
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
1245
1246
            )

1247
        cls._save_lora_weights(
1248
            save_directory=save_directory,
1249
1250
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1251
1252
1253
1254
1255
1256
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

1257
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.fuse_lora with unet->transformer
1258
1259
1260
1261
1262
1263
1264
1265
1266
    def fuse_lora(
        self,
        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1267
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1268
1269
        """
        super().fuse_lora(
1270
1271
1272
1273
1274
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1275
1276
        )

1277
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.unfuse_lora with unet->transformer
1278
1279
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
1280
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1281
        """
1282
        super().unfuse_lora(components=components, **kwargs)
1283
1284


1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
class AuraFlowLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`AuraFlowTransformer2DModel`] Specific to [`AuraFlowPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1302
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1315
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1316
1317
1318
1319
1320
1321

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1322
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1323

1324
        state_dict, metadata = _fetch_state_dict(
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1345
1346
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1347
1348
1349

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
1350
1351
1352
1353
1354
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
1355
1356
    ):
        """
1357
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1373
1374
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1375
1376
1377
1378
1379
1380
1381
1382
1383

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1384
            metadata=metadata,
1385
1386
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1387
            hotswap=hotswap,
1388
1389
1390
1391
1392
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->AuraFlowTransformer2DModel
    def load_lora_into_transformer(
1393
1394
1395
1396
1397
1398
1399
1400
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1401
1402
    ):
        """
1403
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1416
            metadata=metadata,
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1432
        transformer_lora_adapter_metadata: Optional[dict] = None,
1433
1434
    ):
        r"""
1435
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1436
        """
1437
1438
        lora_layers = {}
        lora_metadata = {}
1439

1440
1441
1442
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1443

1444
1445
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1446

1447
        cls._save_lora_weights(
1448
            save_directory=save_directory,
1449
1450
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1467
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
1480
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1481
1482
1483
1484
        """
        super().unfuse_lora(components=components, **kwargs)


Sayak Paul's avatar
Sayak Paul committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
class FluxLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`FluxTransformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Aryan's avatar
Aryan committed
1496
    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
Sayak Paul's avatar
Sayak Paul committed
1497
1498
1499
1500
1501
1502

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1503
        return_alphas: bool = False,
Sayak Paul's avatar
Sayak Paul committed
1504
1505
1506
        **kwargs,
    ):
        r"""
1507
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1520
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Sayak Paul's avatar
Sayak Paul committed
1521
1522
1523
1524
1525
1526

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1527
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Sayak Paul's avatar
Sayak Paul committed
1528

1529
        state_dict, metadata = _fetch_state_dict(
Sayak Paul's avatar
Sayak Paul committed
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
1543
1544
1545
1546
1547
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
Sayak Paul's avatar
Sayak Paul committed
1548

1549
1550
1551
1552
1553
        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
        is_kohya = any(".lora_down.weight" in k for k in state_dict)
        if is_kohya:
            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
            # Kohya already takes care of scaling the LoRA parameters with alpha.
1554
1555
1556
1557
1558
1559
1560
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1561
1562
1563
1564
1565

        is_xlabs = any("processor" in k for k in state_dict)
        if is_xlabs:
            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
            # xlabs doesn't use `alpha`.
1566
1567
1568
1569
1570
1571
1572
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1573

Aryan's avatar
Aryan committed
1574
1575
1576
        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
        if is_bfl_control:
            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
1577
1578
1579
1580
1581
1582
1583
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
Aryan's avatar
Aryan committed
1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        is_fal_kontext = any("base_model" in k for k in state_dict)
        if is_fal_kontext:
            state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        # For state dicts like
        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
        keys = list(state_dict.keys())
        network_alphas = {}
        for k in keys:
            if "alpha" in k:
                alpha_value = state_dict.get(k)
                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
                    alpha_value, float
                ):
                    network_alphas[k] = state_dict.pop(k)
                else:
                    raise ValueError(
                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
                    )

1612
        if return_alphas or return_lora_metadata:
1613
1614
1615
1616
1617
1618
1619
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=network_alphas,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1620
1621
        else:
            return state_dict
Sayak Paul's avatar
Sayak Paul committed
1622
1623

    def load_lora_weights(
1624
1625
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1626
        adapter_name: Optional[str] = None,
1627
1628
        hotswap: bool = False,
        **kwargs,
Sayak Paul's avatar
Sayak Paul committed
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1648
1649
1650
            low_cpu_mem_usage (`bool`, *optional*):
                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1651
1652
1653
1654
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Sayak Paul's avatar
Sayak Paul committed
1655
1656
1657
1658
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1659
1660
1661
1662
1663
1664
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Sayak Paul's avatar
Sayak Paul committed
1665
1666
1667
1668
1669
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1670
1671
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
1672
1673
            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
        )
Sayak Paul's avatar
Sayak Paul committed
1674

Aryan's avatar
Aryan committed
1675
1676
1677
1678
1679
1680
1681
1682
        has_lora_keys = any("lora" in key for key in state_dict.keys())

        # Flux Control LoRAs also have norm keys
        has_norm_keys = any(
            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
        )

        if not (has_lora_keys or has_norm_keys):
Sayak Paul's avatar
Sayak Paul committed
1683
1684
            raise ValueError("Invalid LoRA checkpoint.")

Aryan's avatar
Aryan committed
1685
        transformer_lora_state_dict = {
1686
1687
1688
            k: state_dict.get(k)
            for k in list(state_dict.keys())
            if k.startswith(f"{self.transformer_name}.") and "lora" in k
Aryan's avatar
Aryan committed
1689
1690
1691
1692
        }
        transformer_norm_state_dict = {
            k: state_dict.pop(k)
            for k in list(state_dict.keys())
1693
1694
            if k.startswith(f"{self.transformer_name}.")
            and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
Aryan's avatar
Aryan committed
1695
1696
1697
        }

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
1698
1699
1700
1701
1702
        has_param_with_expanded_shape = False
        if len(transformer_lora_state_dict) > 0:
            has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
                transformer, transformer_lora_state_dict, transformer_norm_state_dict
            )
Aryan's avatar
Aryan committed
1703
1704
1705
1706
1707
1708
1709
1710

        if has_param_with_expanded_shape:
            logger.info(
                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
                "To get a comprehensive list of parameter names that were modified, enable debug logging."
            )
        if len(transformer_lora_state_dict) > 0:
1711
1712
            transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
                transformer=transformer, lora_state_dict=transformer_lora_state_dict
1713
            )
1714
1715
1716
1717
1718
1719
1720
1721
            for k in transformer_lora_state_dict:
                state_dict.update({k: transformer_lora_state_dict[k]})

        self.load_lora_into_transformer(
            state_dict,
            network_alphas=network_alphas,
            transformer=transformer,
            adapter_name=adapter_name,
1722
            metadata=metadata,
1723
1724
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1725
            hotswap=hotswap,
1726
        )
Sayak Paul's avatar
Sayak Paul committed
1727

Aryan's avatar
Aryan committed
1728
1729
1730
1731
1732
1733
1734
        if len(transformer_norm_state_dict) > 0:
            transformer._transformer_norm_layers = self._load_norm_into_transformer(
                transformer_norm_state_dict,
                transformer=transformer,
                discard_original_layers=False,
            )

1735
1736
1737
1738
1739
1740
1741
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1742
            metadata=metadata,
1743
1744
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1745
            hotswap=hotswap,
1746
        )
Sayak Paul's avatar
Sayak Paul committed
1747
1748

    @classmethod
1749
    def load_lora_into_transformer(
1750
1751
1752
1753
1754
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
1755
        metadata=None,
1756
1757
1758
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
1759
    ):
Sayak Paul's avatar
Sayak Paul committed
1760
        """
1761
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1762
        """
1763
1764
1765
1766
1767
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1768
        # Load the layers corresponding to transformer.
1769
1770
1771
1772
1773
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
1774
            metadata=metadata,
1775
1776
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1777
            hotswap=hotswap,
1778
        )
Sayak Paul's avatar
Sayak Paul committed
1779

Aryan's avatar
Aryan committed
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
    @classmethod
    def _load_norm_into_transformer(
        cls,
        state_dict,
        transformer,
        prefix=None,
        discard_original_layers=False,
    ) -> Dict[str, torch.Tensor]:
        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
1792
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833

        # Find invalid keys
        transformer_state_dict = transformer.state_dict()
        transformer_keys = set(transformer_state_dict.keys())
        state_dict_keys = set(state_dict.keys())
        extra_keys = list(state_dict_keys - transformer_keys)

        if extra_keys:
            logger.warning(
                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
            )

        for key in extra_keys:
            state_dict.pop(key)

        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
        overwritten_layers_state_dict = {}
        if not discard_original_layers:
            for key in state_dict.keys():
                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()

        logger.info(
            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
        )

        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)

        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
        if unexpected_keys:
            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
                raise ValueError(
                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
                )

        return overwritten_layers_state_dict

Sayak Paul's avatar
Sayak Paul committed
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1845
        low_cpu_mem_usage=False,
1846
        hotswap: bool = False,
1847
        metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1848
1849
1850
1851
1852
1853
1854
1855
1856
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1857
1858
1859
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
Sayak Paul's avatar
Sayak Paul committed
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1870
1871
1872
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1873
1874
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1875
1876
1877
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
1878
        """
1879
1880
1881
1882
1883
1884
1885
1886
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1887
            metadata=metadata,
1888
1889
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1890
            hotswap=hotswap,
1891
        )
Sayak Paul's avatar
Sayak Paul committed
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1904
1905
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1928
1929
1930
1931
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
Sayak Paul's avatar
Sayak Paul committed
1932
        """
1933
1934
        lora_layers = {}
        lora_metadata = {}
Sayak Paul's avatar
Sayak Paul committed
1935
1936

        if transformer_lora_layers:
1937
1938
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1939
1940

        if text_encoder_lora_layers:
1941
1942
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1943

1944
1945
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1946

1947
        cls._save_lora_weights(
Sayak Paul's avatar
Sayak Paul committed
1948
            save_directory=save_directory,
1949
1950
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Sayak Paul's avatar
Sayak Paul committed
1951
1952
1953
1954
1955
1956
1957
1958
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
1959
        components: List[str] = ["transformer"],
Sayak Paul's avatar
Sayak Paul committed
1960
1961
1962
1963
1964
1965
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1966
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1967
        """
Aryan's avatar
Aryan committed
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if (
            hasattr(transformer, "_transformer_norm_layers")
            and isinstance(transformer._transformer_norm_layers, dict)
            and len(transformer._transformer_norm_layers.keys()) > 0
        ):
            logger.info(
                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
            )

Sayak Paul's avatar
Sayak Paul committed
1981
        super().fuse_lora(
1982
1983
1984
1985
1986
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Sayak Paul's avatar
Sayak Paul committed
1987
1988
1989
1990
1991
1992
1993
        )

    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

Steven Liu's avatar
Steven Liu committed
1994
        > [!WARNING] > This is an experimental API.
Sayak Paul's avatar
Sayak Paul committed
1995
1996
1997
1998

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
Aryan's avatar
Aryan committed
1999
2000
2001
2002
        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)

2003
        super().unfuse_lora(components=components, **kwargs)
Sayak Paul's avatar
Sayak Paul committed
2004

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
    def unload_lora_weights(self, reset_to_overwritten_params=False):
        """
        Unloads the LoRA parameters.

        Args:
            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
                to their original params. Refer to the [Flux
                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
Aryan's avatar
Aryan committed
2023
2024
2025
2026
2027
2028
2029
        super().unload_lora_weights()

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
            transformer._transformer_norm_layers = None

2030
        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
            overwritten_params = transformer._overwritten_params
            module_names = set()

            for param_name in overwritten_params:
                if param_name.endswith(".weight"):
                    module_names.add(param_name.replace(".weight", ""))

            for name, module in transformer.named_modules():
                if isinstance(module, torch.nn.Linear) and name in module_names:
                    module_weight = module.weight.data
                    module_bias = module.bias.data if module.bias is not None else None
                    bias = module_bias is not None

                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

                    current_param_weight = overwritten_params[f"{name}.weight"]
                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
                    with torch.device("meta"):
                        original_module = torch.nn.Linear(
                            in_features,
                            out_features,
                            bias=bias,
                            dtype=module_weight.dtype,
                        )

                    tmp_state_dict = {"weight": current_param_weight}
                    if module_bias is not None:
                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
                    setattr(parent_module, current_module_name, original_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(current_param_weight.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )

Aryan's avatar
Aryan committed
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
    @classmethod
    def _maybe_expand_transformer_param_shape_or_error_(
        cls,
        transformer: torch.nn.Module,
        lora_state_dict=None,
        norm_state_dict=None,
        prefix=None,
    ) -> bool:
        """
        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
2084
        generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
Aryan's avatar
Aryan committed
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
        """
        state_dict = {}
        if lora_state_dict is not None:
            state_dict.update(lora_state_dict)
        if norm_state_dict is not None:
            state_dict.update(norm_state_dict)

        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2096
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2097
2098
2099

        # Expand transformer parameter shapes if they don't match lora
        has_param_with_shape_update = False
2100
2101
        overwritten_params = {}

2102
        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
hlky's avatar
hlky committed
2103
        is_quantized = hasattr(transformer, "hf_quantizer")
Aryan's avatar
Aryan committed
2104
2105
2106
        for name, module in transformer.named_modules():
            if isinstance(module, torch.nn.Linear):
                module_weight = module.weight.data
2107
                module_bias = module.bias.data if module.bias is not None else None
Aryan's avatar
Aryan committed
2108
2109
                bias = module_bias is not None

2110
2111
2112
2113
                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
                if lora_A_weight_name not in state_dict:
Aryan's avatar
Aryan committed
2114
2115
2116
2117
2118
                    continue

                in_features = state_dict[lora_A_weight_name].shape[1]
                out_features = state_dict[lora_B_weight_name].shape[0]

2119
2120
2121
2122
2123
                # Model maybe loaded with different quantization schemes which may flatten the params.
                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
                # preserve weight shape.
                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)

Aryan's avatar
Aryan committed
2124
                # This means there's no need for an expansion in the params, so we simply skip.
2125
                if tuple(module_weight_shape) == (out_features, in_features):
Aryan's avatar
Aryan committed
2126
2127
                    continue

hlky's avatar
hlky committed
2128
                module_out_features, module_in_features = module_weight_shape
2129
2130
2131
2132
2133
2134
                debug_message = ""
                if in_features > module_in_features:
                    debug_message += (
                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
                        f"expanded from {module_in_features} to {in_features}"
Aryan's avatar
Aryan committed
2135
                    )
2136
                if out_features > module_out_features:
2137
2138
2139
2140
2141
2142
                    debug_message += (
                        ", and the number of output features will be "
                        f"expanded from {module_out_features} to {out_features}."
                    )
                else:
                    debug_message += "."
2143
2144
2145
2146
2147
2148
2149
2150
                if debug_message:
                    logger.debug(debug_message)

                if out_features > module_out_features or in_features > module_in_features:
                    has_param_with_shape_update = True
                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

hlky's avatar
hlky committed
2151
2152
2153
2154
                    if is_quantized:
                        module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)

                    # TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
                    with torch.device("meta"):
                        expanded_module = torch.nn.Linear(
                            in_features, out_features, bias=bias, dtype=module_weight.dtype
                        )
                    # Only weights are expanded and biases are not. This is because only the input dimensions
                    # are changed while the output dimensions remain the same. The shape of the weight tensor
                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
                    # explains the reason why only weights are expanded.
                    new_weight = torch.zeros_like(
                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
                    )
hlky's avatar
hlky committed
2166
                    slices = tuple(slice(0, dim) for dim in module_weight_shape)
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
                    new_weight[slices] = module_weight
                    tmp_state_dict = {"weight": new_weight}
                    if module_bias is not None:
                        tmp_state_dict["bias"] = module_bias
                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)

                    setattr(parent_module, current_module_name, expanded_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(expanded_module.weight.data.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )
Aryan's avatar
Aryan committed
2185

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
                    # For `unload_lora_weights()`.
                    # TODO: this could lead to more memory overhead if the number of overwritten params
                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
                    overwritten_params[f"{current_module_name}.weight"] = module_weight
                    if module_bias is not None:
                        overwritten_params[f"{current_module_name}.bias"] = module_bias

        if len(overwritten_params) > 0:
            transformer._overwritten_params = overwritten_params

2196
        return has_param_with_shape_update
Aryan's avatar
Aryan committed
2197

2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
    @classmethod
    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
        expanded_module_names = set()
        transformer_state_dict = transformer.state_dict()
        prefix = f"{cls.transformer_name}."

        lora_module_names = [
            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
        ]
        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
        lora_module_names = sorted(set(lora_module_names))
        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
        if unexpected_modules:
            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")

        for k in lora_module_names:
            if k in unexpected_modules:
                continue

            base_param_name = (
2219
                f"{k.replace(prefix, '')}.base_layer.weight"
2220
                if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
2221
                else f"{k.replace(prefix, '')}.weight"
2222
2223
2224
2225
            )
            base_weight_param = transformer_state_dict[base_param_name]
            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

2226
2227
2228
2229
            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)

            if base_module_shape[1] > lora_A_param.shape[1]:
2230
2231
2232
2233
2234
                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
                expanded_module_names.add(k)
2235
            elif base_module_shape[1] < lora_A_param.shape[1]:
2236
2237
                raise NotImplementedError(
                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
Aryan's avatar
Aryan committed
2238
2239
                )

2240
2241
2242
2243
        if expanded_module_names:
            logger.info(
                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
            )
Aryan's avatar
Aryan committed
2244

2245
        return lora_state_dict
Aryan's avatar
Aryan committed
2246

2247
2248
2249
2250
2251
2252
2253
    @staticmethod
    def _calculate_module_shape(
        model: "torch.nn.Module",
        base_module: "torch.nn.Linear" = None,
        base_weight_param_name: str = None,
    ) -> "torch.Size":
        def _get_weight_shape(weight: torch.Tensor):
hlky's avatar
hlky committed
2254
2255
2256
2257
2258
2259
            if weight.__class__.__name__ == "Params4bit":
                return weight.quant_state.shape
            elif weight.__class__.__name__ == "GGUFParameter":
                return weight.quant_shape
            else:
                return weight.shape
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273

        if base_module is not None:
            return _get_weight_shape(base_module.weight)
        elif base_weight_param_name is not None:
            if not base_weight_param_name.endswith(".weight"):
                raise ValueError(
                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
                )
            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
            submodule = get_submodule_by_name(model, module_path)
            return _get_weight_shape(submodule.weight)

        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")

2274
2275
2276
2277
2278
2279
2280
2281
2282
    @staticmethod
    def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
        outputs = [state_dict]
        if return_alphas:
            outputs.append(alphas)
        if return_metadata:
            outputs.append(metadata)
        return tuple(outputs) if (return_alphas or return_metadata) else state_dict

Sayak Paul's avatar
Sayak Paul committed
2283

2284
2285
2286
2287
2288
2289
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Dhruv Nair's avatar
Dhruv Nair committed
2290
2291

    @classmethod
2292
2293
    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
    def load_lora_into_transformer(
2294
2295
2296
2297
2298
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2299
        metadata=None,
2300
2301
2302
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2303
    ):
Dhruv Nair's avatar
Dhruv Nair committed
2304
        """
2305
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Dhruv Nair's avatar
Dhruv Nair committed
2306
        """
2307
2308
2309
2310
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )
Dhruv Nair's avatar
Dhruv Nair committed
2311

2312
        # Load the layers corresponding to transformer.
2313
2314
2315
2316
2317
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2318
            metadata=metadata,
2319
2320
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2321
            hotswap=hotswap,
2322
        )
Dhruv Nair's avatar
Dhruv Nair committed
2323

2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2335
        low_cpu_mem_usage=False,
2336
        hotswap: bool = False,
2337
        metadata=None,
2338
2339
2340
2341
2342
2343
2344
2345
2346
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2347
2348
2349
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2360
2361
2362
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2363
2364
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2365
2366
2367
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
2368
        """
2369
2370
2371
2372
2373
2374
2375
2376
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2377
            metadata=metadata,
2378
2379
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2380
            hotswap=hotswap,
2381
        )
2382

Dhruv Nair's avatar
Dhruv Nair committed
2383
2384
2385
2386
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
2387
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
Dhruv Nair's avatar
Dhruv Nair committed
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
2400
2401
2402
2403
2404
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
Dhruv Nair's avatar
Dhruv Nair committed
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

2418
2419
        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Dhruv Nair's avatar
Dhruv Nair committed
2420
2421

        if transformer_lora_layers:
2422
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
Dhruv Nair's avatar
Dhruv Nair committed
2423

2424
        if text_encoder_lora_layers:
2425
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
2426

Dhruv Nair's avatar
Dhruv Nair committed
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2437

Aryan's avatar
Aryan committed
2438
2439
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
    r"""
2440
    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
Aryan's avatar
Aryan committed
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2455
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2468
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2469
2470
2471
2472
2473
2474

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2475
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2476

2477
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
2492
2493
2494
2495
2496
2497
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2498
2499
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2500
2501

    def load_lora_weights(
2502
2503
2504
2505
2506
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2507
2508
    ):
        """
2509
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2510
2511
2512
2513
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

2514
2515
2516
2517
2518
2519
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Aryan's avatar
Aryan committed
2520
2521
2522
2523
2524
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2525
2526
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2527

Sayak Paul's avatar
Sayak Paul committed
2528
        is_correct_format = all("lora" in key for key in state_dict.keys())
Aryan's avatar
Aryan committed
2529
2530
2531
2532
2533
2534
2535
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2536
            metadata=metadata,
Aryan's avatar
Aryan committed
2537
            _pipeline=self,
2538
            low_cpu_mem_usage=low_cpu_mem_usage,
2539
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2540
2541
2542
        )

    @classmethod
2543
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
2544
    def load_lora_into_transformer(
2545
2546
2547
2548
2549
2550
2551
2552
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2553
    ):
Aryan's avatar
Aryan committed
2554
        """
2555
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2556
        """
2557
2558
2559
2560
2561
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

2562
2563
2564
2565
2566
2567
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2568
            metadata=metadata,
2569
2570
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2571
            hotswap=hotswap,
2572
        )
Aryan's avatar
Aryan committed
2573
2574
2575
2576
2577
2578

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
2579
2580
2581
2582
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2583
        transformer_lora_adapter_metadata: Optional[dict] = None,
2584
2585
    ):
        r"""
2586
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
2587
        """
2588
2589
        lora_layers = {}
        lora_metadata = {}
2590

2591
2592
2593
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2594

2595
2596
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
2597

2598
        cls._save_lora_weights(
2599
            save_directory=save_directory,
2600
2601
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
2602
2603
2604
2605
2606
2607
2608
2609
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
2610
        components: List[str] = ["transformer"],
2611
2612
2613
2614
2615
2616
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2617
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
2618
2619
        """
        super().fuse_lora(
2620
2621
2622
2623
2624
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
2625
2626
        )

2627
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
2628
        r"""
2629
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
2630
        """
2631
        super().unfuse_lora(components=components, **kwargs)
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650


class Mochi1LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2651
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2664
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
2665
2666
2667
2668
2669
2670

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2671
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
2672

2673
        state_dict, metadata = _fetch_state_dict(
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2694
2695
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
2696
2697
2698

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2699
2700
2701
2702
2703
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
2704
2705
    ):
        """
2706
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2722
2723
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
2724
2725
2726
2727
2728
2729
2730
2731
2732

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2733
            metadata=metadata,
2734
2735
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2736
            hotswap=hotswap,
2737
2738
2739
        )

    @classmethod
2740
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
2741
    def load_lora_into_transformer(
2742
2743
2744
2745
2746
2747
2748
2749
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2750
2751
    ):
        """
2752
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2765
            metadata=metadata,
Aryan's avatar
Aryan committed
2766
2767
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2768
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2781
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
2782
2783
    ):
        r"""
2784
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
2785
        """
2786
2787
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
2788

2789
2790
2791
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2792

2793
2794
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
2795

2796
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
2797
            save_directory=save_directory,
2798
2799
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
2800
2801
2802
2803
2804
2805
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2806
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
2807
2808
    def fuse_lora(
        self,
2809
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
2810
2811
2812
2813
2814
2815
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2816
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
2817
2818
        """
        super().fuse_lora(
2819
2820
2821
2822
2823
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
2824
2825
        )

2826
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
2827
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
2828
        r"""
2829
2830
2831
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
        """
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849


class LTXVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2850
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2863
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2864
2865
2866
2867
2868
2869

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2870
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2871

2872
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2893
2894
2895
2896
        is_non_diffusers_format = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict)

2897
2898
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2899
2900
2901

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2902
2903
2904
2905
2906
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2907
2908
    ):
        """
2909
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2925
2926
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2927
2928
2929
2930
2931
2932
2933
2934
2935

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2936
            metadata=metadata,
Aryan's avatar
Aryan committed
2937
2938
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2939
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2940
2941
2942
2943
2944
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
    def load_lora_into_transformer(
2945
2946
2947
2948
2949
2950
2951
2952
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
2953
2954
    ):
        """
2955
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2968
            metadata=metadata,
2969
2970
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2971
            hotswap=hotswap,
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2984
        transformer_lora_adapter_metadata: Optional[dict] = None,
2985
2986
    ):
        r"""
2987
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
2988
        """
2989
2990
        lora_layers = {}
        lora_metadata = {}
2991

2992
2993
2994
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2995

2996
2997
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
2998

2999
        cls._save_lora_weights(
3000
            save_directory=save_directory,
3001
3002
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3003
3004
3005
3006
3007
3008
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3009
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3010
3011
    def fuse_lora(
        self,
3012
        components: List[str] = ["transformer"],
3013
3014
3015
3016
3017
3018
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3019
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3020
3021
        """
        super().fuse_lora(
3022
3023
3024
3025
3026
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3027
3028
        )

3029
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3030
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3031
        r"""
3032
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3033
        """
3034
        super().unfuse_lora(components=components, **kwargs)
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053


class SanaLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3054
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3067
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3068
3069
3070
3071
3072
3073

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3074
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3075

3076
        state_dict, metadata = _fetch_state_dict(
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3097
3098
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3099
3100
3101

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3102
3103
3104
3105
3106
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3107
3108
    ):
        """
3109
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3125
3126
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3127
3128
3129
3130
3131
3132
3133
3134
3135

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3136
            metadata=metadata,
3137
3138
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3139
            hotswap=hotswap,
3140
3141
3142
3143
3144
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
    def load_lora_into_transformer(
3145
3146
3147
3148
3149
3150
3151
3152
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3153
3154
    ):
        """
3155
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3168
            metadata=metadata,
3169
3170
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3171
            hotswap=hotswap,
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3184
        transformer_lora_adapter_metadata: Optional[dict] = None,
3185
3186
    ):
        r"""
3187
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3188
        """
3189
3190
        lora_layers = {}
        lora_metadata = {}
3191

3192
3193
3194
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3195

3196
3197
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3198

3199
        cls._save_lora_weights(
3200
            save_directory=save_directory,
3201
3202
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3203
3204
3205
3206
3207
3208
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3209
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3210
3211
    def fuse_lora(
        self,
3212
        components: List[str] = ["transformer"],
3213
3214
3215
3216
3217
3218
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3219
3220
3221
3222
3223
3224
3225
3226
3227
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )
3228

3229
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3230
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3231
        r"""
3232
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3233
        """
3234
        super().unfuse_lora(components=components, **kwargs)
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252


class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3253
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3266
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3267
3268
3269
3270
3271
3272

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3273
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3274

3275
        state_dict, metadata = _fetch_state_dict(
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3296
3297
3298
3299
        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
        if is_original_hunyuan_video:
            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)

3300
3301
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3302
3303
3304

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3305
3306
3307
3308
3309
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3310
3311
    ):
        """
3312
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3328
3329
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3330
3331
3332
3333
3334
3335
3336
3337
3338

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3339
            metadata=metadata,
3340
3341
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3342
            hotswap=hotswap,
3343
3344
3345
3346
3347
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
    def load_lora_into_transformer(
3348
3349
3350
3351
3352
3353
3354
3355
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3356
3357
    ):
        """
3358
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3371
            metadata=metadata,
3372
3373
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3374
            hotswap=hotswap,
3375
3376
3377
3378
3379
3380
3381
3382
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
Aryan's avatar
Aryan committed
3383
3384
3385
3386
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3387
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
3388
3389
    ):
        r"""
3390
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
3391
        """
3392
3393
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
3394

3395
3396
3397
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3398

3399
3400
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
3401

3402
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
3403
            save_directory=save_directory,
3404
3405
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
3406
3407
3408
3409
3410
3411
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3412
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
3413
3414
    def fuse_lora(
        self,
3415
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
3416
3417
3418
3419
3420
3421
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3422
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
3423
3424
        """
        super().fuse_lora(
3425
3426
3427
3428
3429
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
3430
3431
        )

3432
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3433
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
3434
        r"""
3435
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
3436
        """
3437
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
3438
3439


3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
class Lumina2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Lumina2Transformer2DModel`]. Specific to [`Lumina2Text2ImgPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3456
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3469
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3470
3471
3472
3473
3474
3475

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3476
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3477

3478
        state_dict, metadata = _fetch_state_dict(
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3499
3500
3501
3502
3503
        # conversion.
        non_diffusers = any(k.startswith("diffusion_model.") for k in state_dict)
        if non_diffusers:
            state_dict = _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict)

3504
3505
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3506
3507
3508

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3509
3510
3511
3512
3513
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3514
3515
    ):
        """
3516
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3532
3533
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3534
3535
3536
3537
3538
3539
3540
3541
3542

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3543
            metadata=metadata,
3544
3545
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3546
            hotswap=hotswap,
3547
3548
3549
3550
3551
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->Lumina2Transformer2DModel
    def load_lora_into_transformer(
3552
3553
3554
3555
3556
3557
3558
3559
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3560
3561
    ):
        """
3562
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3575
            metadata=metadata,
3576
3577
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3578
            hotswap=hotswap,
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3591
        transformer_lora_adapter_metadata: Optional[dict] = None,
3592
3593
    ):
        r"""
3594
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3595
        """
3596
3597
        lora_layers = {}
        lora_metadata = {}
3598

3599
3600
3601
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3602

3603
3604
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3605

3606
        cls._save_lora_weights(
3607
            save_directory=save_directory,
3608
3609
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3626
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3627
3628
        """
        super().fuse_lora(
3629
3630
3631
3632
3633
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3634
3635
3636
3637
3638
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
3639
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3640
        """
3641
        super().unfuse_lora(components=components, **kwargs)
3642
3643


3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
class KandinskyLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Kandinsky5Transformer3DModel`],
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:
                    - A string, the *model id* of a pretrained model hosted on the Hub.
                    - A path to a *directory* containing the model weights.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository.
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
            use_safetensors (`bool`, *optional*):
                Whether to use safetensors for loading.
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata.
        """
        # Load the main state dict first which has the LoRA layers
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer`

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.KandinskyLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model.
            hotswap (`bool`, *optional*):
                Whether to substitute an existing (LoRA) adapter with the newly loaded adapter in-place.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            kwargs (`dict`, *optional*):
                See [`~loaders.KandinskyLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        # Load LoRA into transformer
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        Load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters.
            transformer (`Kandinsky5Transformer3DModel`):
                The transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.KandinskyLoraLoaderMixin.load_lora_weights`].
            metadata (`dict`):
                Optional LoRA adapter metadata.
        """
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata=None,
    ):
        r"""
        Save the LoRA parameters corresponding to the transformer and text encoders.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process.
            save_function (`Callable`):
                The function to use to save the state dictionary.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way.
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer.
        """
        lora_layers = {}
        lora_metadata = {}

        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata

        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers`")

        cls._save_lora_weights(
            save_directory=save_directory,
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing.

        Example:
        ```py
        from diffusers import Kandinsky5T2VPipeline

        pipeline = Kandinsky5T2VPipeline.from_pretrained("ai-forever/Kandinsky-5.0-T2V")
        pipeline.load_lora_weights("path/to/lora.safetensors")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of [`pipe.fuse_lora()`].

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
        super().unfuse_lora(components=components, **kwargs)


Aryan's avatar
Aryan committed
3929
3930
3931
3932
3933
class WanLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
    """

3934
    _lora_loadable_modules = ["transformer", "transformer_2"]
Aryan's avatar
Aryan committed
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3945
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3958
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3959
3960
3961
3962
3963
3964

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3965
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3966

3967
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
3981
3982
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
3983
3984
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
Aryan's avatar
Aryan committed
3985
3986
3987
3988
3989
3990
3991

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3992
3993
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3994

3995
3996
3997
3998
3999
4000
4001
4002
4003
    @classmethod
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

4004
4005
        target_device = transformer.device

4006
        if any(k.startswith("transformer.blocks.") for k in state_dict):
4007
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
4008
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
4009
            has_bias = any(".lora_B.bias" in k for k in state_dict)
4010
4011
4012
4013
4014
4015

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
4016
4017
4018
4019
4020
4021
4022
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

4023
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
4024
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
4025
4026
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
4027
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
4028
4029
                    )

4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

4041
4042
        return state_dict

Aryan's avatar
Aryan committed
4043
    def load_lora_weights(
4044
4045
4046
4047
4048
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
4049
4050
    ):
        """
4051
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4067
4068
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4069
4070
4071
4072
4073
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
Aryan's avatar
Aryan committed
4074
4075
4076
4077
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
Aryan's avatar
Aryan committed
4107
4108
4109
4110

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
    def load_lora_into_transformer(
4111
4112
4113
4114
4115
4116
4117
4118
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
4119
4120
    ):
        """
4121
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
4153
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4154
        """
4155
4156
        lora_layers = {}
        lora_metadata = {}
4157

4158
4159
4160
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4161

4162
4163
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4164

4165
        cls._save_lora_weights(
4166
            save_directory=save_directory,
4167
4168
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4185
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4198
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
        """
        super().unfuse_lora(components=components, **kwargs)


class SkyReelsV2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SkyReelsV2Transformer3DModel`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4220
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin._maybe_expand_t2v_lora_for_i2v
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

        target_device = transformer.device

        if any(k.startswith("transformer.blocks.") for k in state_dict):
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
            has_bias = any(".lora_B.bias" in k for k in state_dict)

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
                    )

                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

        return state_dict

    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4328
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SkyReelsV2Transformer3DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
4398
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4411
            metadata=metadata,
Aryan's avatar
Aryan committed
4412
4413
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4414
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4427
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4428
4429
    ):
        r"""
4430
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4431
        """
4432
4433
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4434

4435
4436
4437
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4438

4439
4440
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4441

4442
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4443
            save_directory=save_directory,
4444
4445
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4462
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4463
4464
        """
        super().fuse_lora(
4465
4466
4467
4468
4469
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4470
4471
4472
4473
4474
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4475
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4476
        """
4477
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496


class CogView4LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4497
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4510
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
4511
4512
4513
4514
4515
4516

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4517
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
4518

4519
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4540
4541
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
4542
4543
4544

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4545
4546
4547
4548
4549
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
4550
4551
    ):
        """
4552
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4568
4569
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
4570
4571
4572
4573
4574
4575
4576
4577
4578

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4579
            metadata=metadata,
Aryan's avatar
Aryan committed
4580
4581
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4582
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4583
4584
4585
4586
4587
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
4588
4589
4590
4591
4592
4593
4594
4595
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
4596
4597
    ):
        """
4598
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4611
            metadata=metadata,
Aryan's avatar
Aryan committed
4612
4613
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4614
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4627
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4628
4629
    ):
        r"""
4630
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4631
        """
4632
4633
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4634

4635
4636
4637
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4638

4639
4640
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4641

4642
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4643
            save_directory=save_directory,
4644
4645
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4662
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4663
4664
        """
        super().fuse_lora(
4665
4666
4667
4668
4669
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4670
4671
4672
4673
4674
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4675
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4676
        """
4677
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4678
4679


4680
4681
4682
4683
4684
class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HiDreamImageTransformer2DModel`]. Specific to [`HiDreamImagePipeline`].
    """

4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4709
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4710
4711
4712
4713
4714
4715

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4716
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4717

4718
        state_dict, metadata = _fetch_state_dict(
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4739
4740
4741
4742
        is_non_diffusers_format = any("diffusion_model" in k for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_hidream_lora_to_diffusers(state_dict)

4743
4744
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4755
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4771
4772
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4773
4774
4775
4776
4777
4778
4779
4780
4781

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4782
            metadata=metadata,
4783
4784
4785
4786
4787
4788
4789
4790
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HiDreamImageTransformer2DModel
    def load_lora_into_transformer(
4791
4792
4793
4794
4795
4796
4797
4798
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4799
4800
    ):
        """
4801
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4814
            metadata=metadata,
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4830
        transformer_lora_adapter_metadata: Optional[dict] = None,
4831
4832
    ):
        r"""
4833
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4834
        """
4835
4836
        lora_layers = {}
        lora_metadata = {}
4837

4838
4839
4840
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4841

4842
4843
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4844

4845
        cls._save_lora_weights(
4846
            save_directory=save_directory,
4847
4848
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4865
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4878
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4879
4880
4881
4882
        """
        super().unfuse_lora(components=components, **kwargs)


4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
class QwenImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`QwenImageTransformer2DModel`]. Specific to [`QwenImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4899
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4942
        has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
4943
        has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
4944
        has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
4945
4946
        has_default = any("default." in k for k in state_dict)
        if has_alphas_in_sd or has_lora_unet or has_diffusion_model or has_default:
4947
4948
            state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)

4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4961
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->QwenImageTransformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
5007
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
5008
5009
5010
5011
5012
5013
5014
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
        """
        lora_layers = {}
        lora_metadata = {}

        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata

        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")

        cls._save_lora_weights(
            save_directory=save_directory,
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
        """
        super().unfuse_lora(components=components, **kwargs)


class ZImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`ZImageTransformer2DModel`]. Specific to [`ZImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
        has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
        has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
        has_default = any("default." in k for k in state_dict)
        if has_alphas_in_sd or has_lora_unet or has_diffusion_model or has_default:
            state_dict = _convert_non_diffusers_z_image_lora_to_diffusers(state_dict)

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->ZImageTransformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
Sayak Paul's avatar
Sayak Paul committed
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
        """
        lora_layers = {}
        lora_metadata = {}

        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata

        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")

        cls._save_lora_weights(
            save_directory=save_directory,
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
        """
        super().unfuse_lora(components=components, **kwargs)


class Flux2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Flux2Transformer2DModel`]. Specific to [`Flux2Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        is_ai_toolkit = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_ai_toolkit:
            state_dict = _convert_non_diffusers_flux2_lora_to_diffusers(state_dict)

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
5448
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
5449
        """
5450
5451
        lora_layers = {}
        lora_metadata = {}
5452

5453
5454
5455
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
5456

5457
5458
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
5459

5460
        cls._save_lora_weights(
5461
            save_directory=save_directory,
5462
5463
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
5480
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
5493
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
5494
5495
5496
5497
        """
        super().unfuse_lora(components=components, **kwargs)


5498
5499
5500
5501
5502
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    def __init__(self, *args, **kwargs):
        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)