lora_pipeline.py 317 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14

15
16
17
18
import os
from typing import Callable, Dict, List, Optional, Union

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
22

from ..utils import (
    USE_PEFT_BACKEND,
23
    deprecate,
24
    get_submodule_by_name,
hlky's avatar
hlky committed
25
26
    is_bitsandbytes_available,
    is_gguf_available,
27
    is_peft_available,
28
    is_peft_version,
29
    is_torch_version,
30
    is_transformers_available,
31
    is_transformers_version,
32
33
    logging,
)
34
35
36
37
38
39
from .lora_base import (  # noqa
    LORA_WEIGHT_NAME,
    LORA_WEIGHT_NAME_SAFE,
    LoraBaseMixin,
    _fetch_state_dict,
    _load_lora_into_text_encoder,
40
    _pack_dict_with_prefix,
41
)
42
from .lora_conversion_utils import (
Aryan's avatar
Aryan committed
43
    _convert_bfl_flux_control_lora_to_diffusers,
44
    _convert_fal_kontext_lora_to_diffusers,
45
    _convert_hunyuan_video_lora_to_diffusers,
46
    _convert_kohya_flux_lora_to_diffusers,
47
    _convert_musubi_wan_lora_to_diffusers,
48
    _convert_non_diffusers_hidream_lora_to_diffusers,
49
    _convert_non_diffusers_lora_to_diffusers,
50
    _convert_non_diffusers_ltxv_lora_to_diffusers,
51
    _convert_non_diffusers_lumina2_lora_to_diffusers,
52
    _convert_non_diffusers_qwen_lora_to_diffusers,
53
    _convert_non_diffusers_wan_lora_to_diffusers,
54
55
56
    _convert_xlabs_flux_lora_to_diffusers,
    _maybe_map_sgm_blocks_to_diffusers,
)
57
58


59
60
61
62
63
64
65
66
67
68
69
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
    if (
        is_peft_available()
        and is_peft_version(">=", "0.13.1")
        and is_transformers_available()
        and is_transformers_version(">", "4.45.2")
    ):
        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True


70
71
72
73
logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
Will Berman's avatar
Will Berman committed
74
TRANSFORMER_NAME = "transformer"
75

Aryan's avatar
Aryan committed
76
77
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}

78

hlky's avatar
hlky committed
79
80
81
82
83
84
85
86
def _maybe_dequantize_weight_for_expanded_lora(model, module):
    if is_bitsandbytes_available():
        from ..quantizers.bitsandbytes import dequantize_bnb_weight

    if is_gguf_available():
        from ..quantizers.gguf.utils import dequantize_gguf_tensor

    is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
87
    is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
hlky's avatar
hlky committed
88
89
90
91
92
93
    is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"

    if is_bnb_4bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
        )
94
95
96
97
    if is_bnb_8bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
        )
hlky's avatar
hlky committed
98
99
100
101
102
103
    if is_gguf_quantized and not is_gguf_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
        )

    weight_on_cpu = False
104
    if module.weight.device.type == "cpu":
hlky's avatar
hlky committed
105
106
        weight_on_cpu = True

107
    device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
108
    if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
hlky's avatar
hlky committed
109
        module_weight = dequantize_bnb_weight(
110
            module.weight.to(device) if weight_on_cpu else module.weight,
111
            state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
hlky's avatar
hlky committed
112
113
114
115
            dtype=model.dtype,
        ).data
    elif is_gguf_quantized:
        module_weight = dequantize_gguf_tensor(
116
            module.weight.to(device) if weight_on_cpu else module.weight,
hlky's avatar
hlky committed
117
118
119
120
121
122
123
124
125
126
127
        )
        module_weight = module_weight.to(model.dtype)
    else:
        module_weight = module.weight.data

    if weight_on_cpu:
        module_weight = module_weight.cpu()

    return module_weight


128
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
129
    r"""
130
    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
131
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
132
    """
133

134
    _lora_loadable_modules = ["unet", "text_encoder"]
135
    unet_name = UNET_NAME
136
    text_encoder_name = TEXT_ENCODER_NAME
137
138

    def load_lora_weights(
139
140
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
141
        adapter_name: Optional[str] = None,
142
143
        hotswap: bool = False,
        **kwargs,
144
    ):
145
        """Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
146
147
148
149
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

150
151
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
152

153
154
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
155

156
157
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
158
159
160

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
161
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
162
            adapter_name (`str`, *optional*):
163
164
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
165
166
167
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
168
            hotswap (`bool`, *optional*):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
                in-place. This means that, instead of loading an additional adapter, this will take the existing
                adapter weights and replace them with the weights of the new adapter. This can be faster and more
                memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
                torch.compile, loading the new adapter does not require recompilation of the model. When using
                hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.

                If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
                to call an additional method before loading the adapter:

                ```py
                pipeline = ...  # load diffusers pipeline
                max_rank = ...  # the highest rank among all LoRAs that you want to load
                # call *before* compiling and loading the LoRA adapter
                pipeline.enable_lora_hotswap(target_rank=max_rank)
                pipeline.load_lora_weights(file_name)
                # optionally compile the model now
                ```

                Note that hotswapping adapters of the text encoder is not yet supported. There are some further
                limitations to this technique, which are documented here:
                https://huggingface.co/docs/peft/main/en/package_reference/hotswap
191
192
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
193
        """
194
195
196
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

197
198
199
200
201
202
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

203
204
205
206
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

207
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
208
209
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
210

Sayak Paul's avatar
Sayak Paul committed
211
        is_correct_format = all("lora" in key for key in state_dict.keys())
212
213
214
215
216
217
218
219
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            adapter_name=adapter_name,
220
            metadata=metadata,
221
            _pipeline=self,
222
            low_cpu_mem_usage=low_cpu_mem_usage,
223
            hotswap=hotswap,
224
225
226
227
228
229
230
231
232
233
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
            _pipeline=self,
234
            metadata=metadata,
235
            low_cpu_mem_usage=low_cpu_mem_usage,
236
            hotswap=hotswap,
237
238
239
        )

    @classmethod
240
    @validate_hf_hub_args
241
242
243
244
245
246
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
247
248
249
250
251
252
253
254
255
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
256
257
258
259
260
261
262

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
263
264
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
265
266
267
268
269
270
271
272
273
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
274

275
276
277
278
279
280
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
281
            token (`str` or *bool*, *optional*):
282
283
284
285
286
287
288
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
289
290
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
291
292
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
293
294
295
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
296
        cache_dir = kwargs.pop("cache_dir", None)
297
298
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
299
300
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
301
302
303
304
305
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
306
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
307
308
309
310
311
312

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

313
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
314

315
        state_dict, metadata = _fetch_state_dict(
316
317
318
319
320
321
322
323
324
325
326
327
328
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
329
330
331
332
333
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
349
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
350
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
351

352
353
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
354
355

    @classmethod
356
    def load_lora_into_unet(
357
358
359
360
361
362
363
364
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
365
        metadata=None,
366
    ):
367
        """
368
        This will load the LoRA layers specified in `state_dict` into `unet`.
369
370
371

        Parameters:
            state_dict (`dict`):
372
373
374
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
375
            network_alphas (`Dict[str, float]`):
376
377
378
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
379
380
381
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
382
383
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
384
385
386
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
387
388
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
389
390
391
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
392
        """
393
394
395
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

396
397
398
399
400
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

401
402
403
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
404
405
406
407
408
409
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
410
            metadata=metadata,
411
412
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
413
            hotswap=hotswap,
414
        )
415

416
417
418
419
420
421
422
423
424
425
    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
426
        low_cpu_mem_usage=False,
427
        hotswap: bool = False,
428
        metadata=None,
429
430
431
432
433
434
435
436
437
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
438
439
440
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
441
442
443
444
445
446
447
448
449
450
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
451
452
453
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
454
455
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
456
457
458
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
459
        """
460
461
462
463
464
465
466
467
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
468
            metadata=metadata,
469
470
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
471
            hotswap=hotswap,
472
        )
473

474
475
476
477
478
479
480
481
482
483
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
484
485
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
486
487
    ):
        r"""
488
        Save the LoRA parameters corresponding to the UNet and text encoder.
489
490
491

        Arguments:
            save_directory (`str` or `os.PathLike`):
492
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
493
494
495
496
497
498
499
500
501
502
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
503
504
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
505
506
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
507
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
508
509
510
511
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
512
513
        """
        state_dict = {}
514
        lora_adapter_metadata = {}
515

516
517
        if not (unet_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.")
518

519
        if unet_lora_layers:
520
            state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
521

522
        if text_encoder_lora_layers:
523
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
Will Berman's avatar
Will Berman committed
524

525
526
527
528
529
530
531
532
        if unet_lora_adapter_metadata:
            lora_adapter_metadata.update(_pack_dict_with_prefix(unet_lora_adapter_metadata, cls.unet_name))

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

533
534
535
536
537
538
539
540
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
541
            lora_adapter_metadata=lora_adapter_metadata,
542
543
        )

544
545
    def fuse_lora(
        self,
546
        components: List[str] = ["unet", "text_encoder"],
547
548
549
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
550
        **kwargs,
551
552
553
554
555
556
557
558
559
560
561
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
562
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
583
        super().fuse_lora(
584
585
586
587
588
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
589
        )
590

591
    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
592
593
        r"""
        Reverses the effect of
594
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
595
596
597
598
599
600
601
602

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
603
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
604
605
606
607
608
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
609
        super().unfuse_lora(components=components, **kwargs)
610
611


612
613
614
615
616
617
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
    """
618

619
620
621
    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
    unet_name = UNET_NAME
    text_encoder_name = TEXT_ENCODER_NAME
622

623
624
625
626
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
627
        hotswap: bool = False,
628
629
630
631
632
633
634
635
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

636
637
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
638

639
640
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
641

642
643
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
644
645
646

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
647
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Steven Liu's avatar
Steven Liu committed
648
            adapter_name (`str`, *optional*):
649
650
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
651
652
653
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
654
655
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
656
            kwargs (`dict`, *optional*):
657
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
658
        """
659
660
661
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

662
663
664
665
666
667
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

668
669
670
671
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

672
673
674
675
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

676
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
677
678
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
679
680
681
682
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
Sayak Paul's avatar
Sayak Paul committed
683
684

        is_correct_format = all("lora" in key for key in state_dict.keys())
685
686
687
688
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
689
690
691
692
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            adapter_name=adapter_name,
693
            metadata=metadata,
694
695
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
696
            hotswap=hotswap,
697
        )
698
699
700
701
702
703
704
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
705
            metadata=metadata,
706
707
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
708
            hotswap=hotswap,
709
710
711
712
713
714
715
716
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
717
            metadata=metadata,
718
719
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
720
            hotswap=hotswap,
721
        )
722
723

    @classmethod
724
725
726
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
727
728
729
730
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
731
        r"""
732
        Return state dict for lora weights and the network alphas.
733
734

        <Tip warning={true}>
Dhruv Nair's avatar
Dhruv Nair committed
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
774
775
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
776
777
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
778
779
780
781
782
783
784
785
786
787
788
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
789
        unet_config = kwargs.pop("unet_config", None)
790
        use_safetensors = kwargs.pop("use_safetensors", None)
791
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Dhruv Nair's avatar
Dhruv Nair committed
792

793
794
795
796
797
        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

798
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
799

800
        state_dict, metadata = _fetch_state_dict(
801
802
803
804
805
806
807
808
809
810
811
812
813
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
814
815
816
817
818
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)

837
838
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
839
840
841

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
842
    def load_lora_into_unet(
843
844
845
846
847
848
849
850
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
851
        metadata=None,
852
    ):
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
870
871
872
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
873
874
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
875
876
877
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
878
879
880
881
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

882
883
884
885
886
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

887
888
889
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
890
891
892
893
894
895
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
896
            metadata=metadata,
897
898
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
899
            hotswap=hotswap,
900
        )
901
902
903
904
905
906
907
908
909
910
911
912

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
913
        low_cpu_mem_usage=False,
914
        hotswap: bool = False,
915
        metadata=None,
916
917
918
919
920
921
922
923
924
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
925
926
927
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
928
929
930
931
932
933
934
935
936
937
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
938
939
940
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
941
942
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
943
944
945
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
946
        """
947
948
949
950
951
952
953
954
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
955
            metadata=metadata,
956
957
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
958
            hotswap=hotswap,
959
        )
960
961
962
963
964
965
966
967
968
969
970
971

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
972
973
974
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1000
1001
1002
1003
1004
1005
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
            text_encoder_2_lora_adapter_metadata:
                LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
1006
1007
        """
        state_dict = {}
1008
        lora_adapter_metadata = {}
1009
1010
1011

        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
1012
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
1013
1014
1015
            )

        if unet_lora_layers:
1016
            state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
1017
1018
1019
1020
1021
1022
1023

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))

        if text_encoder_2_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        if unet_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(_pack_dict_with_prefix(unet_lora_adapter_metadata, cls.unet_name))

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

        if text_encoder_2_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_2_lora_adapter_metadata, "text_encoder_2")
            )

1037
1038
1039
1040
1041
1042
1043
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1044
            lora_adapter_metadata=lora_adapter_metadata,
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        )

    def fuse_lora(
        self,
        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
1087
1088
1089
1090
1091
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        )

    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
1112
        super().unfuse_lora(components=components, **kwargs)
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177


class SD3LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SD3Transformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1178
1179
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1193
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1194
1195
1196
1197
1198
1199

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1200
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1201

1202
        state_dict, metadata = _fetch_state_dict(
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
1217
1218
1219
1220
1221
1222
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1223
1224
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1225
1226

    def load_lora_weights(
1227
1228
1229
1230
1231
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name=None,
        hotswap: bool = False,
        **kwargs,
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1251
1252
1253
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1254
1255
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1256
1257
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
1258
1259
1260
1261
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1262
1263
1264
1265
1266
1267
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1268
1269
1270
1271
1272
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1273
1274
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1275

Sayak Paul's avatar
Sayak Paul committed
1276
        is_correct_format = all("lora" in key for key in state_dict.keys())
1277
1278
1279
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

1280
1281
1282
1283
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1284
            metadata=metadata,
1285
1286
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1287
            hotswap=hotswap,
1288
1289
1290
1291
1292
1293
1294
1295
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1296
            metadata=metadata,
1297
1298
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1299
            hotswap=hotswap,
1300
1301
1302
1303
1304
1305
1306
1307
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1308
            metadata=metadata,
1309
1310
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1311
            hotswap=hotswap,
1312
        )
1313
1314

    @classmethod
1315
    def load_lora_into_transformer(
1316
1317
1318
1319
1320
1321
1322
1323
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1324
    ):
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`SD3Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1338
1339
1340
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1341
1342
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1343
1344
1345
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1346
        """
1347
1348
1349
1350
1351
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1352
1353
1354
1355
1356
1357
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1358
            metadata=metadata,
1359
1360
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1361
            hotswap=hotswap,
1362
        )
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1375
        low_cpu_mem_usage=False,
1376
        hotswap: bool = False,
1377
        metadata=None,
1378
1379
1380
1381
1382
1383
1384
1385
1386
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1387
1388
1389
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1400
1401
1402
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1403
1404
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1405
1406
1407
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1408
        """
1409
1410
1411
1412
1413
1414
1415
1416
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1417
            metadata=metadata,
1418
1419
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1420
            hotswap=hotswap,
1421
        )
1422
1423

    @classmethod
1424
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.save_lora_weights with unet->transformer
1425
1426
1427
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
1428
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1429
1430
1431
1432
1433
1434
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1435
1436
1437
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1463
1464
1465
1466
1467
1468
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
            text_encoder_2_lora_adapter_metadata:
                LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
1469
1470
        """
        state_dict = {}
1471
        lora_adapter_metadata = {}
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

        if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
            )

        if transformer_lora_layers:
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))

        if text_encoder_2_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

        if text_encoder_2_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_2_lora_adapter_metadata, "text_encoder_2")
            )

1502
1503
1504
1505
1506
1507
1508
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1509
            lora_adapter_metadata=lora_adapter_metadata,
1510
1511
        )

1512
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.fuse_lora with unet->transformer
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
    def fuse_lora(
        self,
        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
1553
1554
1555
1556
1557
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1558
1559
        )

1560
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.unfuse_lora with unet->transformer
1561
1562
1563
1564
1565
1566
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>
Dhruv Nair's avatar
Dhruv Nair committed
1567

1568
        This is an experimental API.
1569

1570
        </Tip>
1571

1572
1573
        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
1574
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
1575
1576
1577
1578
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
1579
        super().unfuse_lora(components=components, **kwargs)
1580
1581


1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
class AuraFlowLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`AuraFlowTransformer2DModel`] Specific to [`AuraFlowPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1641
1642
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1656
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1657
1658
1659
1660
1661
1662

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1663
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1664

1665
        state_dict, metadata = _fetch_state_dict(
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1686
1687
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1688
1689
1690

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
1691
1692
1693
1694
1695
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1713
1714
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1732
1733
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1734
1735
1736
1737
1738
1739
1740
1741
1742

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1743
            metadata=metadata,
1744
1745
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1746
            hotswap=hotswap,
1747
1748
1749
1750
1751
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->AuraFlowTransformer2DModel
    def load_lora_into_transformer(
1752
1753
1754
1755
1756
1757
1758
1759
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`AuraFlowTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1777
1778
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1779
1780
1781
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1794
            metadata=metadata,
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1810
        transformer_lora_adapter_metadata: Optional[dict] = None,
1811
1812
    ):
        r"""
1813
        Save the LoRA parameters corresponding to the transformer.
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1830
1831
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
1832
1833
        """
        state_dict = {}
1834
        lora_adapter_metadata = {}
1835
1836
1837
1838

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

1839
1840
1841
1842
1843
1844
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
1845
1846
1847
1848
1849
1850
1851
1852
1853

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1854
            lora_adapter_metadata=lora_adapter_metadata,
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


Sayak Paul's avatar
Sayak Paul committed
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
class FluxLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`FluxTransformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Aryan's avatar
Aryan committed
1935
    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
Sayak Paul's avatar
Sayak Paul committed
1936
1937
1938
1939
1940
1941

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1942
        return_alphas: bool = False,
Sayak Paul's avatar
Sayak Paul committed
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1988
1989
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Sayak Paul's avatar
Sayak Paul committed
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2002
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Sayak Paul's avatar
Sayak Paul committed
2003
2004
2005
2006
2007
2008

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2009
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Sayak Paul's avatar
Sayak Paul committed
2010

2011
        state_dict, metadata = _fetch_state_dict(
Sayak Paul's avatar
Sayak Paul committed
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
2025
2026
2027
2028
2029
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
Sayak Paul's avatar
Sayak Paul committed
2030

2031
2032
2033
2034
2035
        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
        is_kohya = any(".lora_down.weight" in k for k in state_dict)
        if is_kohya:
            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
            # Kohya already takes care of scaling the LoRA parameters with alpha.
2036
2037
2038
2039
2040
2041
2042
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
2043
2044
2045
2046
2047

        is_xlabs = any("processor" in k for k in state_dict)
        if is_xlabs:
            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
            # xlabs doesn't use `alpha`.
2048
2049
2050
2051
2052
2053
2054
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
2055

Aryan's avatar
Aryan committed
2056
2057
2058
        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
        if is_bfl_control:
            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
2059
2060
2061
2062
2063
2064
2065
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
Aryan's avatar
Aryan committed
2066

2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
        is_fal_kontext = any("base_model" in k for k in state_dict)
        if is_fal_kontext:
            state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
        # For state dicts like
        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
        keys = list(state_dict.keys())
        network_alphas = {}
        for k in keys:
            if "alpha" in k:
                alpha_value = state_dict.get(k)
                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
                    alpha_value, float
                ):
                    network_alphas[k] = state_dict.pop(k)
                else:
                    raise ValueError(
                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
                    )

2094
        if return_alphas or return_lora_metadata:
2095
2096
2097
2098
2099
2100
2101
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=network_alphas,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
2102
2103
        else:
            return state_dict
Sayak Paul's avatar
Sayak Paul committed
2104
2105

    def load_lora_weights(
2106
2107
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
2108
        adapter_name: Optional[str] = None,
2109
2110
        hotswap: bool = False,
        **kwargs,
Sayak Paul's avatar
Sayak Paul committed
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2130
2131
2132
            low_cpu_mem_usage (`bool`, *optional*):
                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2133
2134
2135
2136
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Sayak Paul's avatar
Sayak Paul committed
2137
2138
2139
2140
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

2141
2142
2143
2144
2145
2146
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Sayak Paul's avatar
Sayak Paul committed
2147
2148
2149
2150
2151
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2152
2153
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
2154
2155
            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
        )
Sayak Paul's avatar
Sayak Paul committed
2156

Aryan's avatar
Aryan committed
2157
2158
2159
2160
2161
2162
2163
2164
        has_lora_keys = any("lora" in key for key in state_dict.keys())

        # Flux Control LoRAs also have norm keys
        has_norm_keys = any(
            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
        )

        if not (has_lora_keys or has_norm_keys):
Sayak Paul's avatar
Sayak Paul committed
2165
2166
            raise ValueError("Invalid LoRA checkpoint.")

Aryan's avatar
Aryan committed
2167
        transformer_lora_state_dict = {
2168
2169
2170
            k: state_dict.get(k)
            for k in list(state_dict.keys())
            if k.startswith(f"{self.transformer_name}.") and "lora" in k
Aryan's avatar
Aryan committed
2171
2172
2173
2174
        }
        transformer_norm_state_dict = {
            k: state_dict.pop(k)
            for k in list(state_dict.keys())
2175
2176
            if k.startswith(f"{self.transformer_name}.")
            and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
Aryan's avatar
Aryan committed
2177
2178
2179
        }

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
2180
2181
2182
2183
2184
        has_param_with_expanded_shape = False
        if len(transformer_lora_state_dict) > 0:
            has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
                transformer, transformer_lora_state_dict, transformer_norm_state_dict
            )
Aryan's avatar
Aryan committed
2185
2186
2187
2188
2189
2190
2191
2192

        if has_param_with_expanded_shape:
            logger.info(
                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
                "To get a comprehensive list of parameter names that were modified, enable debug logging."
            )
        if len(transformer_lora_state_dict) > 0:
2193
2194
            transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
                transformer=transformer, lora_state_dict=transformer_lora_state_dict
2195
            )
2196
2197
2198
2199
2200
2201
2202
2203
            for k in transformer_lora_state_dict:
                state_dict.update({k: transformer_lora_state_dict[k]})

        self.load_lora_into_transformer(
            state_dict,
            network_alphas=network_alphas,
            transformer=transformer,
            adapter_name=adapter_name,
2204
            metadata=metadata,
2205
2206
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2207
            hotswap=hotswap,
2208
        )
Sayak Paul's avatar
Sayak Paul committed
2209

Aryan's avatar
Aryan committed
2210
2211
2212
2213
2214
2215
2216
        if len(transformer_norm_state_dict) > 0:
            transformer._transformer_norm_layers = self._load_norm_into_transformer(
                transformer_norm_state_dict,
                transformer=transformer,
                discard_original_layers=False,
            )

2217
2218
2219
2220
2221
2222
2223
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
2224
            metadata=metadata,
2225
2226
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2227
            hotswap=hotswap,
2228
        )
Sayak Paul's avatar
Sayak Paul committed
2229
2230

    @classmethod
2231
    def load_lora_into_transformer(
2232
2233
2234
2235
2236
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2237
        metadata=None,
2238
2239
2240
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2241
    ):
Sayak Paul's avatar
Sayak Paul committed
2242
2243
2244
2245
2246
2247
2248
2249
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
2250
2251
2252
2253
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2254
            transformer (`FluxTransformer2DModel`):
Sayak Paul's avatar
Sayak Paul committed
2255
2256
2257
2258
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2259
2260
2261
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2262
2263
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2264
2265
2266
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
2267
        """
2268
2269
2270
2271
2272
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

2273
        # Load the layers corresponding to transformer.
2274
2275
2276
2277
2278
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2279
            metadata=metadata,
2280
2281
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2282
            hotswap=hotswap,
2283
        )
Sayak Paul's avatar
Sayak Paul committed
2284

Aryan's avatar
Aryan committed
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
    @classmethod
    def _load_norm_into_transformer(
        cls,
        state_dict,
        transformer,
        prefix=None,
        discard_original_layers=False,
    ) -> Dict[str, torch.Tensor]:
        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2297
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338

        # Find invalid keys
        transformer_state_dict = transformer.state_dict()
        transformer_keys = set(transformer_state_dict.keys())
        state_dict_keys = set(state_dict.keys())
        extra_keys = list(state_dict_keys - transformer_keys)

        if extra_keys:
            logger.warning(
                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
            )

        for key in extra_keys:
            state_dict.pop(key)

        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
        overwritten_layers_state_dict = {}
        if not discard_original_layers:
            for key in state_dict.keys():
                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()

        logger.info(
            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
        )

        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)

        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
        if unexpected_keys:
            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
                raise ValueError(
                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
                )

        return overwritten_layers_state_dict

Sayak Paul's avatar
Sayak Paul committed
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2350
        low_cpu_mem_usage=False,
2351
        hotswap: bool = False,
2352
        metadata=None,
Sayak Paul's avatar
Sayak Paul committed
2353
2354
2355
2356
2357
2358
2359
2360
2361
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2362
2363
2364
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
Sayak Paul's avatar
Sayak Paul committed
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2375
2376
2377
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2378
2379
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2380
2381
2382
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
2383
        """
2384
2385
2386
2387
2388
2389
2390
2391
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2392
            metadata=metadata,
2393
2394
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2395
            hotswap=hotswap,
2396
        )
Sayak Paul's avatar
Sayak Paul committed
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2409
2410
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
Sayak Paul's avatar
Sayak Paul committed
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
2433
2434
2435
2436
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
Sayak Paul's avatar
Sayak Paul committed
2437
2438
        """
        state_dict = {}
2439
        lora_adapter_metadata = {}
Sayak Paul's avatar
Sayak Paul committed
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449

        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.")

        if transformer_lora_layers:
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))

2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
        if transformer_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

Sayak Paul's avatar
Sayak Paul committed
2460
2461
2462
2463
2464
2465
2466
2467
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
2468
            lora_adapter_metadata=lora_adapter_metadata,
Sayak Paul's avatar
Sayak Paul committed
2469
2470
2471
2472
        )

    def fuse_lora(
        self,
2473
        components: List[str] = ["transformer"],
Sayak Paul's avatar
Sayak Paul committed
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
Aryan's avatar
Aryan committed
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if (
            hasattr(transformer, "_transformer_norm_layers")
            and isinstance(transformer._transformer_norm_layers, dict)
            and len(transformer._transformer_norm_layers.keys()) > 0
        ):
            logger.info(
                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
            )

Sayak Paul's avatar
Sayak Paul committed
2523
        super().fuse_lora(
2524
2525
2526
2527
2528
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Sayak Paul's avatar
Sayak Paul committed
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
        )

    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
Aryan's avatar
Aryan committed
2545
2546
2547
2548
        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)

2549
        super().unfuse_lora(components=components, **kwargs)
Sayak Paul's avatar
Sayak Paul committed
2550

2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
    def unload_lora_weights(self, reset_to_overwritten_params=False):
        """
        Unloads the LoRA parameters.

        Args:
            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
                to their original params. Refer to the [Flux
                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
Aryan's avatar
Aryan committed
2569
2570
2571
2572
2573
2574
2575
        super().unload_lora_weights()

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
            transformer._transformer_norm_layers = None

2576
        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
            overwritten_params = transformer._overwritten_params
            module_names = set()

            for param_name in overwritten_params:
                if param_name.endswith(".weight"):
                    module_names.add(param_name.replace(".weight", ""))

            for name, module in transformer.named_modules():
                if isinstance(module, torch.nn.Linear) and name in module_names:
                    module_weight = module.weight.data
                    module_bias = module.bias.data if module.bias is not None else None
                    bias = module_bias is not None

                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

                    current_param_weight = overwritten_params[f"{name}.weight"]
                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
                    with torch.device("meta"):
                        original_module = torch.nn.Linear(
                            in_features,
                            out_features,
                            bias=bias,
                            dtype=module_weight.dtype,
                        )

                    tmp_state_dict = {"weight": current_param_weight}
                    if module_bias is not None:
                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
                    setattr(parent_module, current_module_name, original_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(current_param_weight.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )

Aryan's avatar
Aryan committed
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
    @classmethod
    def _maybe_expand_transformer_param_shape_or_error_(
        cls,
        transformer: torch.nn.Module,
        lora_state_dict=None,
        norm_state_dict=None,
        prefix=None,
    ) -> bool:
        """
        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
2630
        generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
Aryan's avatar
Aryan committed
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
        """
        state_dict = {}
        if lora_state_dict is not None:
            state_dict.update(lora_state_dict)
        if norm_state_dict is not None:
            state_dict.update(norm_state_dict)

        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2642
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2643
2644
2645

        # Expand transformer parameter shapes if they don't match lora
        has_param_with_shape_update = False
2646
2647
        overwritten_params = {}

2648
        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
hlky's avatar
hlky committed
2649
        is_quantized = hasattr(transformer, "hf_quantizer")
Aryan's avatar
Aryan committed
2650
2651
2652
        for name, module in transformer.named_modules():
            if isinstance(module, torch.nn.Linear):
                module_weight = module.weight.data
2653
                module_bias = module.bias.data if module.bias is not None else None
Aryan's avatar
Aryan committed
2654
2655
                bias = module_bias is not None

2656
2657
2658
2659
                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
                if lora_A_weight_name not in state_dict:
Aryan's avatar
Aryan committed
2660
2661
2662
2663
2664
                    continue

                in_features = state_dict[lora_A_weight_name].shape[1]
                out_features = state_dict[lora_B_weight_name].shape[0]

2665
2666
2667
2668
2669
                # Model maybe loaded with different quantization schemes which may flatten the params.
                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
                # preserve weight shape.
                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)

Aryan's avatar
Aryan committed
2670
                # This means there's no need for an expansion in the params, so we simply skip.
2671
                if tuple(module_weight_shape) == (out_features, in_features):
Aryan's avatar
Aryan committed
2672
2673
                    continue

hlky's avatar
hlky committed
2674
                module_out_features, module_in_features = module_weight_shape
2675
2676
2677
2678
2679
2680
                debug_message = ""
                if in_features > module_in_features:
                    debug_message += (
                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
                        f"expanded from {module_in_features} to {in_features}"
Aryan's avatar
Aryan committed
2681
                    )
2682
                if out_features > module_out_features:
2683
2684
2685
2686
2687
2688
                    debug_message += (
                        ", and the number of output features will be "
                        f"expanded from {module_out_features} to {out_features}."
                    )
                else:
                    debug_message += "."
2689
2690
2691
2692
2693
2694
2695
2696
                if debug_message:
                    logger.debug(debug_message)

                if out_features > module_out_features or in_features > module_in_features:
                    has_param_with_shape_update = True
                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

hlky's avatar
hlky committed
2697
2698
2699
2700
                    if is_quantized:
                        module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)

                    # TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
                    with torch.device("meta"):
                        expanded_module = torch.nn.Linear(
                            in_features, out_features, bias=bias, dtype=module_weight.dtype
                        )
                    # Only weights are expanded and biases are not. This is because only the input dimensions
                    # are changed while the output dimensions remain the same. The shape of the weight tensor
                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
                    # explains the reason why only weights are expanded.
                    new_weight = torch.zeros_like(
                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
                    )
hlky's avatar
hlky committed
2712
                    slices = tuple(slice(0, dim) for dim in module_weight_shape)
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
                    new_weight[slices] = module_weight
                    tmp_state_dict = {"weight": new_weight}
                    if module_bias is not None:
                        tmp_state_dict["bias"] = module_bias
                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)

                    setattr(parent_module, current_module_name, expanded_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(expanded_module.weight.data.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )
Aryan's avatar
Aryan committed
2731

2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
                    # For `unload_lora_weights()`.
                    # TODO: this could lead to more memory overhead if the number of overwritten params
                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
                    overwritten_params[f"{current_module_name}.weight"] = module_weight
                    if module_bias is not None:
                        overwritten_params[f"{current_module_name}.bias"] = module_bias

        if len(overwritten_params) > 0:
            transformer._overwritten_params = overwritten_params

2742
        return has_param_with_shape_update
Aryan's avatar
Aryan committed
2743

2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
    @classmethod
    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
        expanded_module_names = set()
        transformer_state_dict = transformer.state_dict()
        prefix = f"{cls.transformer_name}."

        lora_module_names = [
            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
        ]
        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
        lora_module_names = sorted(set(lora_module_names))
        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
        if unexpected_modules:
            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")

        for k in lora_module_names:
            if k in unexpected_modules:
                continue

            base_param_name = (
2765
                f"{k.replace(prefix, '')}.base_layer.weight"
2766
                if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
2767
                else f"{k.replace(prefix, '')}.weight"
2768
2769
2770
2771
            )
            base_weight_param = transformer_state_dict[base_param_name]
            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

2772
2773
2774
2775
            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)

            if base_module_shape[1] > lora_A_param.shape[1]:
2776
2777
2778
2779
2780
                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
                expanded_module_names.add(k)
2781
            elif base_module_shape[1] < lora_A_param.shape[1]:
2782
2783
                raise NotImplementedError(
                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
Aryan's avatar
Aryan committed
2784
2785
                )

2786
2787
2788
2789
        if expanded_module_names:
            logger.info(
                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
            )
Aryan's avatar
Aryan committed
2790

2791
        return lora_state_dict
Aryan's avatar
Aryan committed
2792

2793
2794
2795
2796
2797
2798
2799
    @staticmethod
    def _calculate_module_shape(
        model: "torch.nn.Module",
        base_module: "torch.nn.Linear" = None,
        base_weight_param_name: str = None,
    ) -> "torch.Size":
        def _get_weight_shape(weight: torch.Tensor):
hlky's avatar
hlky committed
2800
2801
2802
2803
2804
2805
            if weight.__class__.__name__ == "Params4bit":
                return weight.quant_state.shape
            elif weight.__class__.__name__ == "GGUFParameter":
                return weight.quant_shape
            else:
                return weight.shape
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819

        if base_module is not None:
            return _get_weight_shape(base_module.weight)
        elif base_weight_param_name is not None:
            if not base_weight_param_name.endswith(".weight"):
                raise ValueError(
                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
                )
            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
            submodule = get_submodule_by_name(model, module_path)
            return _get_weight_shape(submodule.weight)

        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")

2820
2821
2822
2823
2824
2825
2826
2827
2828
    @staticmethod
    def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
        outputs = [state_dict]
        if return_alphas:
            outputs.append(alphas)
        if return_metadata:
            outputs.append(metadata)
        return tuple(outputs) if (return_alphas or return_metadata) else state_dict

Sayak Paul's avatar
Sayak Paul committed
2829

2830
2831
2832
2833
2834
2835
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Dhruv Nair's avatar
Dhruv Nair committed
2836
2837

    @classmethod
2838
2839
    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
    def load_lora_into_transformer(
2840
2841
2842
2843
2844
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2845
        metadata=None,
2846
2847
2848
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2849
    ):
Dhruv Nair's avatar
Dhruv Nair committed
2850
2851
2852
2853
2854
2855
2856
2857
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
2858
            network_alphas (`Dict[str, float]`):
2859
                The value of the network alpha used for stable learning and preventing underflow. This value has the
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            transformer (`UVit2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2872
2873
2874
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Dhruv Nair's avatar
Dhruv Nair committed
2875
        """
2876
2877
2878
2879
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )
Dhruv Nair's avatar
Dhruv Nair committed
2880

2881
        # Load the layers corresponding to transformer.
2882
2883
2884
2885
2886
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2887
            metadata=metadata,
2888
2889
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2890
            hotswap=hotswap,
2891
        )
Dhruv Nair's avatar
Dhruv Nair committed
2892

2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2904
        low_cpu_mem_usage=False,
2905
        hotswap: bool = False,
2906
        metadata=None,
2907
2908
2909
2910
2911
2912
2913
2914
2915
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2916
2917
2918
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2929
2930
2931
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2932
2933
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2934
2935
2936
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
2937
        """
2938
2939
2940
2941
2942
2943
2944
2945
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2946
            metadata=metadata,
2947
2948
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2949
            hotswap=hotswap,
2950
        )
2951

Dhruv Nair's avatar
Dhruv Nair committed
2952
2953
2954
2955
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
2956
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
Dhruv Nair's avatar
Dhruv Nair committed
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
2969
2970
2971
2972
2973
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
Dhruv Nair's avatar
Dhruv Nair committed
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

2987
2988
        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Dhruv Nair's avatar
Dhruv Nair committed
2989
2990

        if transformer_lora_layers:
2991
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
Dhruv Nair's avatar
Dhruv Nair committed
2992

2993
        if text_encoder_lora_layers:
2994
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
2995

Dhruv Nair's avatar
Dhruv Nair committed
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3006

Aryan's avatar
Aryan committed
3007
3008
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
    r"""
3009
    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
Aryan's avatar
Aryan committed
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3066
3067
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3081
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3082
3083
3084
3085
3086
3087

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3088
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3089

3090
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
3105
3106
3107
3108
3109
3110
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3111
3112
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3113
3114

    def load_lora_weights(
3115
3116
3117
3118
3119
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
3134
3135
3136
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3137
3138
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3139
3140
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Aryan's avatar
Aryan committed
3141
3142
3143
3144
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

3145
3146
3147
3148
3149
3150
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Aryan's avatar
Aryan committed
3151
3152
3153
3154
3155
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3156
3157
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
3158

Sayak Paul's avatar
Sayak Paul committed
3159
        is_correct_format = all("lora" in key for key in state_dict.keys())
Aryan's avatar
Aryan committed
3160
3161
3162
3163
3164
3165
3166
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3167
            metadata=metadata,
Aryan's avatar
Aryan committed
3168
            _pipeline=self,
3169
            low_cpu_mem_usage=low_cpu_mem_usage,
3170
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3171
3172
3173
        )

    @classmethod
3174
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
3175
    def load_lora_into_transformer(
3176
3177
3178
3179
3180
3181
3182
3183
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3184
    ):
Aryan's avatar
Aryan committed
3185
3186
3187
3188
3189
3190
3191
3192
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
3193
            transformer (`CogVideoXTransformer3DModel`):
Aryan's avatar
Aryan committed
3194
3195
3196
3197
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
3198
3199
3200
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3201
3202
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3203
3204
3205
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
3206
        """
3207
3208
3209
3210
3211
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

3212
3213
3214
3215
3216
3217
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3218
            metadata=metadata,
3219
3220
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3221
            hotswap=hotswap,
3222
        )
Aryan's avatar
Aryan committed
3223
3224
3225
3226
3227
3228
3229

    @classmethod
    # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3230
3231
3232
3233
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3234
        transformer_lora_adapter_metadata: Optional[dict] = None,
3235
3236
    ):
        r"""
3237
        Save the LoRA parameters corresponding to the transformer.
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3254
3255
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
3256
3257
        """
        state_dict = {}
3258
        lora_adapter_metadata = {}
3259
3260
3261
3262

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3263
3264
3265
3266
3267
3268
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
3269
3270
3271
3272
3273
3274
3275
3276
3277

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3278
            lora_adapter_metadata=lora_adapter_metadata,
3279
3280
3281
3282
        )

    def fuse_lora(
        self,
3283
        components: List[str] = ["transformer"],
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
3321
3322
3323
3324
3325
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3326
3327
        )

3328
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
3343
        super().unfuse_lora(components=components, **kwargs)
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404


class Mochi1LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3405
3406
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3420
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3421
3422
3423
3424
3425
3426

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3427
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3428

3429
        state_dict, metadata = _fetch_state_dict(
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3450
3451
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3452
3453
3454

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3455
3456
3457
3458
3459
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3477
3478
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3496
3497
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3498
3499
3500
3501
3502
3503
3504
3505
3506

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3507
            metadata=metadata,
3508
3509
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3510
            hotswap=hotswap,
3511
3512
3513
        )

    @classmethod
3514
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
3515
    def load_lora_into_transformer(
3516
3517
3518
3519
3520
3521
3522
3523
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3524
3525
3526
3527
3528
3529
3530
3531
3532
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
3533
            transformer (`MochiTransformer3DModel`):
3534
3535
3536
3537
3538
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
Aryan's avatar
Aryan committed
3539
3540
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3541
3542
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3543
3544
3545
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3558
            metadata=metadata,
Aryan's avatar
Aryan committed
3559
3560
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3561
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3574
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
3575
3576
    ):
        r"""
3577
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3594
3595
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
3596
3597
        """
        state_dict = {}
3598
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
3599
3600
3601
3602

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3603
3604
3605
3606
3607
3608
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
3609
3610
3611
3612
3613
3614
3615
3616
3617

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3618
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
3619
3620
        )

3621
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
3622
3623
    def fuse_lora(
        self,
3624
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
3662
3663
3664
3665
3666
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
3667
3668
        )

3669
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3670
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
3685
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745


class LTXVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3746
3747
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3760
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3761
3762
3763
3764
3765
3766

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3767
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3768

3769
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3790
3791
3792
3793
        is_non_diffusers_format = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict)

3794
3795
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3796
3797
3798

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3799
3800
3801
3802
3803
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3821
3822
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3840
3841
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
3842
3843
3844
3845
3846
3847
3848
3849
3850

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3851
            metadata=metadata,
Aryan's avatar
Aryan committed
3852
3853
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3854
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3855
3856
3857
3858
3859
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
    def load_lora_into_transformer(
3860
3861
3862
3863
3864
3865
3866
3867
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`LTXVideoTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
3883
3884
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3885
3886
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3887
3888
3889
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3902
            metadata=metadata,
3903
3904
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3905
            hotswap=hotswap,
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3918
        transformer_lora_adapter_metadata: Optional[dict] = None,
3919
3920
    ):
        r"""
3921
        Save the LoRA parameters corresponding to the transformer.
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3938
3939
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
3940
3941
        """
        state_dict = {}
3942
        lora_adapter_metadata = {}
3943
3944
3945
3946

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3947
3948
3949
3950
3951
3952
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
3953
3954
3955
3956
3957
3958
3959
3960
3961

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3962
            lora_adapter_metadata=lora_adapter_metadata,
3963
3964
        )

3965
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3966
3967
    def fuse_lora(
        self,
3968
        components: List[str] = ["transformer"],
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4006
4007
4008
4009
4010
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
4011
4012
        )

4013
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4014
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
4029
        super().unfuse_lora(components=components, **kwargs)
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090


class SanaLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4091
4092
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4106
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4107
4108
4109
4110
4111
4112

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4113
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4114

4115
        state_dict, metadata = _fetch_state_dict(
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4136
4137
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4138
4139
4140

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4141
4142
4143
4144
4145
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4163
4164
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4182
4183
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4184
4185
4186
4187
4188
4189
4190
4191
4192

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4193
            metadata=metadata,
4194
4195
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4196
            hotswap=hotswap,
4197
4198
4199
4200
4201
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
    def load_lora_into_transformer(
4202
4203
4204
4205
4206
4207
4208
4209
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`SanaTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
4225
4226
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4227
4228
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4229
4230
4231
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4244
            metadata=metadata,
4245
4246
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4247
            hotswap=hotswap,
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4260
        transformer_lora_adapter_metadata: Optional[dict] = None,
4261
4262
    ):
        r"""
4263
        Save the LoRA parameters corresponding to the transformer.
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4280
4281
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
4282
4283
        """
        state_dict = {}
4284
        lora_adapter_metadata = {}
4285
4286
4287
4288

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4289
4290
4291
4292
4293
4294
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
4295
4296
4297
4298
4299
4300
4301
4302
4303

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4304
            lora_adapter_metadata=lora_adapter_metadata,
4305
4306
        )

4307
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
4308
4309
    def fuse_lora(
        self,
4310
        components: List[str] = ["transformer"],
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4348
4349
4350
4351
4352
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
4353
4354
        )

4355
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4356
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
4371
        super().unfuse_lora(components=components, **kwargs)
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393


class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

4394
        We support loading original format HunyuanVideo LoRA checkpoints.
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4432
4433
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4446
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4447
4448
4449
4450
4451
4452

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4453
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4454

4455
        state_dict, metadata = _fetch_state_dict(
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4476
4477
4478
4479
        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
        if is_original_hunyuan_video:
            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)

4480
4481
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4482
4483
4484

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4485
4486
4487
4488
4489
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4507
4508
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4526
4527
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4528
4529
4530
4531
4532
4533
4534
4535
4536

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4537
            metadata=metadata,
4538
4539
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4540
            hotswap=hotswap,
4541
4542
4543
4544
4545
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
    def load_lora_into_transformer(
4546
4547
4548
4549
4550
4551
4552
4553
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`HunyuanVideoTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
4569
4570
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4571
4572
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4573
4574
4575
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4588
            metadata=metadata,
4589
4590
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4591
            hotswap=hotswap,
4592
4593
4594
4595
4596
4597
4598
4599
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
Aryan's avatar
Aryan committed
4600
4601
4602
4603
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4604
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4605
4606
    ):
        r"""
4607
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4624
4625
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
4626
4627
        """
        state_dict = {}
4628
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
4629
4630
4631
4632

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4633
4634
4635
4636
4637
4638
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
4639
4640
4641
4642
4643
4644
4645
4646
4647

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4648
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
4649
4650
        )

4651
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
4652
4653
    def fuse_lora(
        self,
4654
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4692
4693
4694
4695
4696
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4697
4698
        )

4699
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4700
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
4715
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4716
4717


4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
class Lumina2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Lumina2Transformer2DModel`]. Specific to [`Lumina2Text2ImgPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4776
4777
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4790
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4791
4792
4793
4794
4795
4796

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4797
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4798

4799
        state_dict, metadata = _fetch_state_dict(
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4820
4821
4822
4823
4824
        # conversion.
        non_diffusers = any(k.startswith("diffusion_model.") for k in state_dict)
        if non_diffusers:
            state_dict = _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict)

4825
4826
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4827
4828
4829

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4830
4831
4832
4833
4834
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4852
4853
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4871
4872
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4873
4874
4875
4876
4877
4878
4879
4880
4881

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4882
            metadata=metadata,
4883
4884
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4885
            hotswap=hotswap,
4886
4887
4888
4889
4890
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->Lumina2Transformer2DModel
    def load_lora_into_transformer(
4891
4892
4893
4894
4895
4896
4897
4898
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`Lumina2Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4916
4917
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4918
4919
4920
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4933
            metadata=metadata,
4934
4935
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4936
            hotswap=hotswap,
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4949
        transformer_lora_adapter_metadata: Optional[dict] = None,
4950
4951
    ):
        r"""
4952
        Save the LoRA parameters corresponding to the transformer.
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4969
4970
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
4971
4972
        """
        state_dict = {}
4973
        lora_adapter_metadata = {}
4974
4975
4976
4977

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4978
4979
4980
4981
4982
4983
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
4984
4985
4986
4987
4988
4989
4990
4991
4992

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4993
            lora_adapter_metadata=lora_adapter_metadata,
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
5037
5038
5039
5040
5041
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
5060
        super().unfuse_lora(components=components, **kwargs)
5061
5062


Aryan's avatar
Aryan committed
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
class WanLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
5121
5122
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
5135
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
5136
5137
5138
5139
5140
5141

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

5142
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
5143

5144
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
5158
5159
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
5160
5161
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
Aryan's avatar
Aryan committed
5162
5163
5164
5165
5166
5167
5168

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

5169
5170
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
5171

5172
5173
5174
5175
5176
5177
5178
5179
5180
    @classmethod
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

5181
5182
        target_device = transformer.device

5183
        if any(k.startswith("transformer.blocks.") for k in state_dict):
5184
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
5185
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
5186
            has_bias = any(".lora_B.bias" in k for k in state_dict)
5187
5188
5189
5190
5191
5192

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
5193
5194
5195
5196
5197
5198
5199
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

5200
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
5201
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
5202
5203
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
5204
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
5205
5206
                    )

5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

5218
5219
        return state_dict

Aryan's avatar
Aryan committed
5220
    def load_lora_weights(
5221
5222
5223
5224
5225
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5243
5244
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
5262
5263
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
5264
5265
5266
5267
5268
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
Aryan's avatar
Aryan committed
5269
5270
5271
5272
5273
5274
5275
5276
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
5277
            metadata=metadata,
Aryan's avatar
Aryan committed
5278
5279
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
5280
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5281
5282
5283
5284
5285
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
    def load_lora_into_transformer(
5286
5287
5288
5289
5290
5291
5292
5293
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`WanTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
Aryan's avatar
Aryan committed
5305
5306
5307
5308
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
        Save the LoRA parameters corresponding to the transformer.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
        """
        state_dict = {}
        lora_adapter_metadata = {}

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
            lora_adapter_metadata=lora_adapter_metadata,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


class SkyReelsV2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SkyReelsV2Transformer3DModel`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin._maybe_expand_t2v_lora_for_i2v
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

        target_device = transformer.device

        if any(k.startswith("transformer.blocks.") for k in state_dict):
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
            has_bias = any(".lora_B.bias" in k for k in state_dict)

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
                    )

                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

        return state_dict

    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SkyReelsV2Transformer3DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`SkyReelsV2Transformer3DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
Aryan's avatar
Aryan committed
5707
5708
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5709
5710
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
5711
5712
5713
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
5726
            metadata=metadata,
Aryan's avatar
Aryan committed
5727
5728
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
5729
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
5742
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
5743
5744
    ):
        r"""
5745
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
5762
5763
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
5764
5765
        """
        state_dict = {}
5766
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
5767
5768
5769
5770

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

5771
5772
5773
5774
5775
5776
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
5777
5778
5779
5780
5781
5782
5783
5784
5785

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
5786
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
5830
5831
5832
5833
5834
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
5853
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914


class CogView4LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
5915
5916
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
5930
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
5931
5932
5933
5934
5935
5936

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

5937
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
5938

5939
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

5960
5961
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
5962
5963
5964

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
5965
5966
5967
5968
5969
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5987
5988
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
6006
6007
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
6008
6009
6010
6011
6012
6013
6014
6015
6016

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
6017
            metadata=metadata,
Aryan's avatar
Aryan committed
6018
6019
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
6020
            hotswap=hotswap,
Aryan's avatar
Aryan committed
6021
6022
6023
6024
6025
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
6026
6027
6028
6029
6030
6031
6032
6033
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`CogView4Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
Aryan's avatar
Aryan committed
6045
6046
6047
6048
6049
6050
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
6051
6052
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
6053
6054
6055
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
6068
            metadata=metadata,
Aryan's avatar
Aryan committed
6069
6070
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
6071
            hotswap=hotswap,
Aryan's avatar
Aryan committed
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
6084
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
6085
6086
    ):
        r"""
6087
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
6104
6105
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
6106
6107
        """
        state_dict = {}
6108
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
6109
6110
6111
6112

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

6113
6114
6115
6116
6117
6118
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
6119
6120
6121
6122
6123
6124
6125
6126
6127

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
6128
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
6172
6173
6174
6175
6176
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
6195
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
6196
6197


6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HiDreamImageTransformer2DModel`]. Specific to [`HiDreamImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
6256
6257
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
6270
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
6271
6272
6273
6274
6275
6276

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

6277
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
6278

6279
        state_dict, metadata = _fetch_state_dict(
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

6300
6301
6302
6303
        is_non_diffusers_format = any("diffusion_model" in k for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_hidream_lora_to_diffusers(state_dict)

6304
6305
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
6350
6351
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
6352
6353
6354
6355
6356
6357
6358
6359
6360

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
6361
            metadata=metadata,
6362
6363
6364
6365
6366
6367
6368
6369
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HiDreamImageTransformer2DModel
    def load_lora_into_transformer(
6370
6371
6372
6373
6374
6375
6376
6377
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`HiDreamImageTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
6397
6398
6399
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
6412
            metadata=metadata,
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
6428
        transformer_lora_adapter_metadata: Optional[dict] = None,
6429
6430
    ):
        r"""
6431
        Save the LoRA parameters corresponding to the transformer.
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
6448
6449
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
6450
6451
        """
        state_dict = {}
6452
        lora_adapter_metadata = {}
6453
6454
6455
6456

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

6457
6458
6459
6460
6461
6462
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
6463
6464
6465
6466
6467
6468
6469
6470
6471

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
6472
            lora_adapter_metadata=lora_adapter_metadata,
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
class QwenImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`QwenImageTransformer2DModel`]. Specific to [`QwenImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

6645
        has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
6646
6647
        has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
        if has_alphas_in_sd or has_lora_unet:
6648
6649
            state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)

6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->QwenImageTransformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`QwenImageTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
        Save the LoRA parameters corresponding to the transformer.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
        """
        state_dict = {}
        lora_adapter_metadata = {}

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
            lora_adapter_metadata=lora_adapter_metadata,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


6888
6889
6890
6891
6892
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    def __init__(self, *args, **kwargs):
        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)