unet_rl.py 7.98 KB
Newer Older
1
2
3
4
# model adapted from diffuser https://github.com/jannerm/diffuser/blob/main/diffuser/models/temporal.py

import torch
import torch.nn as nn
5

Nathan Lambert's avatar
Nathan Lambert committed
6
7
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
8
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
9
from .resnet import ResidualTemporalBlock
Nathan Lambert's avatar
Nathan Lambert committed
10
11


12
13
14
15
16
17
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
18
        return get_timestep_embedding(x, self.dim)
19

20

21
22
23
24
25
26
27
28
class Downsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.Conv1d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)

29

30
31
32
33
34
35
36
37
class Upsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)

38

Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
        else:
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


54
class Conv1dBlock(nn.Module):
55
56
57
    """
    Conv1d --> GroupNorm --> Mish
    """
58
59
60
61
62
63

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
        super().__init__()

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
Patrick von Platen's avatar
Patrick von Platen committed
64
65
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
66
            nn.GroupNorm(n_groups, out_channels),
Patrick von Platen's avatar
Patrick von Platen committed
67
68
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
69
70
71
72
73
74
75
            nn.Mish(),
        )

    def forward(self, x):
        return self.block(x)


Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# class ResidualTemporalBlock(nn.Module):
#    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
#        super().__init__()
#
#        self.blocks = nn.ModuleList(
#            [
#                Conv1dBlock(inp_channels, out_channels, kernel_size),
#                Conv1dBlock(out_channels, out_channels, kernel_size),
#            ]
#        )
#
#        self.time_mlp = nn.Sequential(
#            nn.Mish(),
#            nn.Linear(embed_dim, out_channels),
#            RearrangeDim(),
#            Rearrange("batch t -> batch t 1"),
#        )
#
#        self.residual_conv = (
#            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
#        )
#
#    def forward(self, x, t):
#        """
# x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x #
out_channels x horizon ] #"""
#        out = self.blocks[0](x) + self.time_mlp(t)
#        out = self.blocks[1](out)
#        return out + self.residual_conv(x)
105
106


anton-l's avatar
anton-l committed
107
class TemporalUNet(ModelMixin, ConfigMixin):  # (nn.Module):
108
    def __init__(
109
        self,
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
        training_horizon=128,
        transition_dim=14,
        cond_dim=3,
113
114
115
        predict_epsilon=False,
        clip_denoised=True,
        dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
116
        dim_mults=(1, 4, 8),
117
118
119
    ):
        super().__init__()

Nathan Lambert's avatar
Nathan Lambert committed
120
121
122
123
124
        self.transition_dim = transition_dim
        self.cond_dim = cond_dim
        self.predict_epsilon = predict_epsilon
        self.clip_denoised = clip_denoised

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)

143
144
145
            self.downs.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
146
147
                        ResidualTemporalBlock(dim_in, dim_out, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_out, dim_out, embed_dim=time_dim, horizon=training_horizon),
148
149
150
151
                        Downsample1d(dim_out) if not is_last else nn.Identity(),
                    ]
                )
            )
152
153

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
154
                training_horizon = training_horizon // 2
155
156

        mid_dim = dims[-1]
Nathan Lambert's avatar
Nathan Lambert committed
157
158
        self.mid_block1 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
        self.mid_block2 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
159
160
161
162

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            is_last = ind >= (num_resolutions - 1)

163
164
165
            self.ups.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
166
167
                        ResidualTemporalBlock(dim_out * 2, dim_in, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_in, dim_in, embed_dim=time_dim, horizon=training_horizon),
168
169
170
171
                        Upsample1d(dim_in) if not is_last else nn.Identity(),
                    ]
                )
            )
172
173

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
174
                training_horizon = training_horizon * 2
175
176
177
178
179
180

        self.final_conv = nn.Sequential(
            Conv1dBlock(dim, dim, kernel_size=5),
            nn.Conv1d(dim, transition_dim, 1),
        )

Patrick von Platen's avatar
Patrick von Platen committed
181
    def forward(self, x, timesteps):
182
183
184
        """
        x : [ batch x horizon x transition ]
        """
185

Patrick von Platen's avatar
Patrick von Platen committed
186
        x = x.permute(0, 2, 1)
187

Patrick von Platen's avatar
Patrick von Platen committed
188
        t = self.time_mlp(timesteps)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        h = []

        for resnet, resnet2, downsample in self.downs:
            x = resnet(x, t)
            x = resnet2(x, t)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_block2(x, t)

        for resnet, resnet2, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = resnet(x, t)
            x = resnet2(x, t)
            x = upsample(x)

        x = self.final_conv(x)

Patrick von Platen's avatar
Patrick von Platen committed
208
        x = x.permute(0, 2, 1)
209
210
211
        return x


212
class TemporalValue(nn.Module):
213
    def __init__(
214
215
216
217
218
219
220
221
        self,
        horizon,
        transition_dim,
        cond_dim,
        dim=32,
        time_dim=None,
        out_dim=1,
        dim_mults=(1, 2, 4, 8),
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    ):
        super().__init__()

        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = time_dim or dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.blocks = nn.ModuleList([])

        print(in_out)
        for dim_in, dim_out in in_out:
240
241
242
243
244
245
246
247
248
            self.blocks.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_in, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        ResidualTemporalBlock(dim_out, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        Downsample1d(dim_out),
                    ]
                )
            )
249
250
251
252
253
254
255
256
257
258
259
260

            horizon = horizon // 2

        fc_dim = dims[-1] * max(horizon, 1)

        self.final_block = nn.Sequential(
            nn.Linear(fc_dim + time_dim, fc_dim // 2),
            nn.Mish(),
            nn.Linear(fc_dim // 2, out_dim),
        )

    def forward(self, x, cond, time, *args):
261
262
263
        """
        x : [ batch x horizon x transition ]
        """
264

Patrick von Platen's avatar
Patrick von Platen committed
265
        x = x.permute(0, 2, 1)
266
267
268
269
270
271
272
273
274
275

        t = self.time_mlp(time)

        for resnet, resnet2, downsample in self.blocks:
            x = resnet(x, t)
            x = resnet2(x, t)
            x = downsample(x)

        x = x.view(len(x), -1)
        out = self.final_block(torch.cat([x, t], dim=-1))
276
        return out