unet_grad_tts.py 6.13 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
import torch

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
5
from .attention import LinearAttention
6
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
7
8
9
from .resnet import Downsample
from .resnet import ResnetBlockGradTTS as ResnetBlock
from .resnet import Upsample
patil-suraj's avatar
patil-suraj committed
10

11

patil-suraj's avatar
patil-suraj committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Rezero(torch.nn.Module):
    def __init__(self, fn):
        super(Rezero, self).__init__()
        self.fn = fn
        self.g = torch.nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return self.fn(x) * self.g


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
30
31
32
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
        )
patil-suraj's avatar
patil-suraj committed
33
34
35
36
37
38

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask


Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# class ResnetBlock(torch.nn.Module):
#    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
#        super(ResnetBlock, self).__init__()
#        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
#
#        self.block1 = Block(dim, dim_out, groups=groups)
#        self.block2 = Block(dim_out, dim_out, groups=groups)
#        if dim != dim_out:
#            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
#        else:
#            self.res_conv = torch.nn.Identity()
#
#    def forward(self, x, mask, time_emb):
#        h = self.block1(x, mask)
#        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
#        h = self.block2(h, mask)
#        output = h + self.res_conv(x * mask)
#        return output
patil-suraj's avatar
patil-suraj committed
57
58
59
60
61
62
63
64
65
66
67
68
69


class Residual(torch.nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        output = self.fn(x, *args, **kwargs) + x
        return output


class UNetGradTTSModel(ModelMixin, ConfigMixin):
70
    def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
patil-suraj's avatar
patil-suraj committed
71
72
        super(UNetGradTTSModel, self).__init__()

73
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
74
75
76
77
78
79
            dim=dim,
            dim_mults=dim_mults,
            groups=groups,
            n_spks=n_spks,
            spk_emb_dim=spk_emb_dim,
            n_feats=n_feats,
80
            pe_scale=pe_scale,
patil-suraj's avatar
patil-suraj committed
81
        )
82

patil-suraj's avatar
patil-suraj committed
83
84
85
86
87
88
        self.dim = dim
        self.dim_mults = dim_mults
        self.groups = groups
        self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
        self.spk_emb_dim = spk_emb_dim
        self.pe_scale = pe_scale
89

patil-suraj's avatar
patil-suraj committed
90
        if n_spks > 1:
patil-suraj's avatar
patil-suraj committed
91
            self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
patil-suraj's avatar
style  
patil-suraj committed
92
93
94
            self.spk_mlp = torch.nn.Sequential(
                torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(), torch.nn.Linear(spk_emb_dim * 4, n_feats)
            )
95

96
        self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(), torch.nn.Linear(dim * 4, dim))
patil-suraj's avatar
patil-suraj committed
97
98
99
100
101
102
103
104
105

        dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))
        self.downs = torch.nn.ModuleList([])
        self.ups = torch.nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
106
107
108
109
110
111
            self.downs.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
                        ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_out))),
patil-suraj's avatar
patil-suraj committed
112
                        Downsample(dim_out, use_conv=True, padding=1) if not is_last else torch.nn.Identity(),
113
114
115
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
116
117
118
119
120
121
122

        mid_dim = dims[-1]
        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
        self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
123
124
125
126
127
128
            self.ups.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
                        ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_in))),
patil-suraj's avatar
patil-suraj committed
129
                        Upsample(dim_in, use_conv_transpose=True),
130
131
132
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
133
134
135
        self.final_block = Block(dim, dim)
        self.final_conv = torch.nn.Conv2d(dim, 1, 1)

patil-suraj's avatar
patil-suraj committed
136
    def forward(self, x, timesteps, mu, mask, spk=None):
patil-suraj's avatar
patil-suraj committed
137
138
139
140
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)

patil-suraj's avatar
patil-suraj committed
141
142
        if not isinstance(spk, type(None)):
            s = self.spk_mlp(spk)
143

144
        t = get_timestep_embedding(timesteps, self.dim, scale=self.pe_scale)
patil-suraj's avatar
patil-suraj committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        t = self.mlp(t)

        if self.n_spks < 2:
            x = torch.stack([mu, x], 1)
        else:
            s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
            x = torch.stack([mu, x, s], 1)
        mask = mask.unsqueeze(1)

        hiddens = []
        masks = [mask]
        for resnet1, resnet2, attn, downsample in self.downs:
            mask_down = masks[-1]
            x = resnet1(x, mask_down, t)
            x = resnet2(x, mask_down, t)
            x = attn(x)
            hiddens.append(x)
            x = downsample(x * mask_down)
            masks.append(mask_down[:, :, :, ::2])

        masks = masks[:-1]
        mask_mid = masks[-1]
        x = self.mid_block1(x, mask_mid, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, mask_mid, t)

        for resnet1, resnet2, attn, upsample in self.ups:
            mask_up = masks.pop()
            x = torch.cat((x, hiddens.pop()), dim=1)
            x = resnet1(x, mask_up, t)
            x = resnet2(x, mask_up, t)
            x = attn(x)
            x = upsample(x * mask_up)

        x = self.final_block(x, mask)
        output = self.final_conv(x * mask)

182
        return (output * mask).squeeze(1)