unet_grad_tts.py 7.21 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
import torch

3

patil-suraj's avatar
patil-suraj committed
4
try:
patil-suraj's avatar
patil-suraj committed
5
    from einops import rearrange
patil-suraj's avatar
patil-suraj committed
6
7
8
9
10
11
except:
    print("Einops is not installed")
    pass

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
12
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
13

14

patil-suraj's avatar
patil-suraj committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Upsample(torch.nn.Module):
    def __init__(self, dim):
        super(Upsample, self).__init__()
        self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Downsample(torch.nn.Module):
    def __init__(self, dim):
        super(Downsample, self).__init__()
        self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Rezero(torch.nn.Module):
    def __init__(self, fn):
        super(Rezero, self).__init__()
        self.fn = fn
        self.g = torch.nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return self.fn(x) * self.g


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
51
52
53
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
        )
patil-suraj's avatar
patil-suraj committed
54
55
56
57
58
59
60
61
62

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask


class ResnetBlock(torch.nn.Module):
    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
        super(ResnetBlock, self).__init__()
63
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
        else:
            self.res_conv = torch.nn.Identity()

    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
        return output


class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
86
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
patil-suraj's avatar
patil-suraj committed
87
88
89
90

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
91
        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
patil-suraj's avatar
patil-suraj committed
92
        k = k.softmax(dim=-1)
93
94
95
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
patil-suraj's avatar
patil-suraj committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        return self.to_out(out)


class Residual(torch.nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        output = self.fn(x, *args, **kwargs) + x
        return output


class UNetGradTTSModel(ModelMixin, ConfigMixin):
110
    def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
patil-suraj's avatar
patil-suraj committed
111
112
        super(UNetGradTTSModel, self).__init__()

113
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
114
115
116
117
118
119
            dim=dim,
            dim_mults=dim_mults,
            groups=groups,
            n_spks=n_spks,
            spk_emb_dim=spk_emb_dim,
            n_feats=n_feats,
120
            pe_scale=pe_scale,
patil-suraj's avatar
patil-suraj committed
121
        )
122

patil-suraj's avatar
patil-suraj committed
123
124
125
126
127
128
        self.dim = dim
        self.dim_mults = dim_mults
        self.groups = groups
        self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
        self.spk_emb_dim = spk_emb_dim
        self.pe_scale = pe_scale
129

patil-suraj's avatar
patil-suraj committed
130
        if n_spks > 1:
patil-suraj's avatar
patil-suraj committed
131
            self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
patil-suraj's avatar
style  
patil-suraj committed
132
133
134
            self.spk_mlp = torch.nn.Sequential(
                torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(), torch.nn.Linear(spk_emb_dim * 4, n_feats)
            )
135

136
        self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(), torch.nn.Linear(dim * 4, dim))
patil-suraj's avatar
patil-suraj committed
137
138
139
140
141
142
143
144
145

        dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))
        self.downs = torch.nn.ModuleList([])
        self.ups = torch.nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
146
147
148
149
150
151
152
153
154
155
            self.downs.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
                        ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_out))),
                        Downsample(dim_out) if not is_last else torch.nn.Identity(),
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
156
157
158
159
160
161
162

        mid_dim = dims[-1]
        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
        self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
163
164
165
166
167
168
169
170
171
172
            self.ups.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
                        ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_in))),
                        Upsample(dim_in),
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
173
174
175
        self.final_block = Block(dim, dim)
        self.final_conv = torch.nn.Conv2d(dim, 1, 1)

patil-suraj's avatar
patil-suraj committed
176
    def forward(self, x, timesteps, mu, mask, spk=None):
patil-suraj's avatar
patil-suraj committed
177
178
179
180
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)

patil-suraj's avatar
patil-suraj committed
181
182
        if not isinstance(spk, type(None)):
            s = self.spk_mlp(spk)
183

184
        t = get_timestep_embedding(timesteps, self.dim, scale=self.pe_scale)
patil-suraj's avatar
patil-suraj committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        t = self.mlp(t)

        if self.n_spks < 2:
            x = torch.stack([mu, x], 1)
        else:
            s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
            x = torch.stack([mu, x, s], 1)
        mask = mask.unsqueeze(1)

        hiddens = []
        masks = [mask]
        for resnet1, resnet2, attn, downsample in self.downs:
            mask_down = masks[-1]
            x = resnet1(x, mask_down, t)
            x = resnet2(x, mask_down, t)
            x = attn(x)
            hiddens.append(x)
            x = downsample(x * mask_down)
            masks.append(mask_down[:, :, :, ::2])

        masks = masks[:-1]
        mask_mid = masks[-1]
        x = self.mid_block1(x, mask_mid, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, mask_mid, t)

        for resnet1, resnet2, attn, upsample in self.ups:
            mask_up = masks.pop()
            x = torch.cat((x, hiddens.pop()), dim=1)
            x = resnet1(x, mask_up, t)
            x = resnet2(x, mask_up, t)
            x = attn(x)
            x = upsample(x * mask_up)

        x = self.final_block(x, mask)
        output = self.final_conv(x * mask)

222
        return (output * mask).squeeze(1)