test_repaint.py 5.22 KB
Newer Older
Revist's avatar
Revist committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Revist's avatar
Revist committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Revist's avatar
Revist committed
17
18
19
20
21
22
import unittest

import numpy as np
import torch

from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
23
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device
Revist's avatar
Revist committed
24

25
26
from ...test_pipelines_common import PipelineTesterMixin

Revist's avatar
Revist committed
27
28
29
30

torch.backends.cuda.matmul.allow_tf32 = False


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = RePaintPipeline
    test_cpu_offload = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        torch.manual_seed(0)
        unet = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        scheduler = RePaintScheduler()
        components = {"unet": unet, "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
        image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
        mask = (image > 0).to(device=device, dtype=torch.float32)
        inputs = {
            "image": image,
            "mask_image": mask,
            "generator": generator,
            "num_inference_steps": 5,
            "eta": 0.0,
            "jump_length": 2,
            "jump_n_sample": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_repaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = RePaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
84

85
86
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    # RePaint can hardly be made deterministic since the scheduler is currently always
    # nondeterministic
    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

109

110
@nightly
Revist's avatar
Revist committed
111
@require_torch_gpu
112
113
114
115
116
117
class RepaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

Revist's avatar
Revist committed
118
119
120
121
122
123
124
125
    def test_celebahq(self):
        original_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
            "repaint/celeba_hq_256.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
        )
126
        expected_image = load_numpy(
Revist's avatar
Revist committed
127
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
128
            "repaint/celeba_hq_256_result.npy"
Revist's avatar
Revist committed
129
130
131
132
        )

        model_id = "google/ddpm-ema-celebahq-256"
        unet = UNet2DModel.from_pretrained(model_id)
133
        scheduler = RePaintScheduler.from_pretrained(model_id)
Revist's avatar
Revist committed
134
135

        repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
136
137
        repaint.set_progress_bar_config(disable=None)
        repaint.enable_attention_slicing()
Revist's avatar
Revist committed
138

139
        generator = torch.manual_seed(0)
Revist's avatar
Revist committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        output = repaint(
            original_image,
            mask_image,
            num_inference_steps=250,
            eta=0.0,
            jump_length=10,
            jump_n_sample=10,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).mean() < 1e-2