test_repaint.py 4.48 KB
Newer Older
Revist's avatar
Revist committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Revist's avatar
Revist committed
17
18
19
20
21
22
import unittest

import numpy as np
import torch

from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
23
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, torch_device
Revist's avatar
Revist committed
24

25
26
from ...test_pipelines_common import PipelineTesterMixin

Revist's avatar
Revist committed
27
28
29
30

torch.backends.cuda.matmul.allow_tf32 = False


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = RePaintPipeline
    test_cpu_offload = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        torch.manual_seed(0)
        unet = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        scheduler = RePaintScheduler()
        components = {"unet": unet, "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
        image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
        mask = (image > 0).to(device=device, dtype=torch.float32)
        inputs = {
            "image": image,
            "mask_image": mask,
            "generator": generator,
            "num_inference_steps": 5,
            "eta": 0.0,
            "jump_length": 2,
            "jump_n_sample": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_repaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = RePaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
84

85
86
87
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3


88
@nightly
Revist's avatar
Revist committed
89
@require_torch_gpu
90
91
92
93
94
95
class RepaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

Revist's avatar
Revist committed
96
97
98
99
100
101
102
103
    def test_celebahq(self):
        original_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
            "repaint/celeba_hq_256.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
        )
104
        expected_image = load_numpy(
Revist's avatar
Revist committed
105
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
106
            "repaint/celeba_hq_256_result.npy"
Revist's avatar
Revist committed
107
108
109
110
        )

        model_id = "google/ddpm-ema-celebahq-256"
        unet = UNet2DModel.from_pretrained(model_id)
111
        scheduler = RePaintScheduler.from_pretrained(model_id)
Revist's avatar
Revist committed
112
113

        repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
114
115
        repaint.set_progress_bar_config(disable=None)
        repaint.enable_attention_slicing()
Revist's avatar
Revist committed
116

117
        generator = torch.manual_seed(0)
Revist's avatar
Revist committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        output = repaint(
            original_image,
            mask_image,
            num_inference_steps=250,
            eta=0.0,
            jump_length=10,
            jump_n_sample=10,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).mean() < 1e-2