"vscode:/vscode.git/clone" did not exist on "4cd08dc59239480516adec28c77e46de3b973abe"
scheduling_ddpm_flax.py 12.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
21
import jax
22
23
import jax.numpy as jnp

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils_flax import (
26
    CommonSchedulerState,
Kashif Rasul's avatar
Kashif Rasul committed
27
    FlaxKarrasDiffusionSchedulers,
28
29
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
30
    add_noise_common,
31
    get_velocity_common,
32
)
33
34
35
36


@flax.struct.dataclass
class DDPMSchedulerState:
37
38
    common: CommonSchedulerState

39
    # setable values
40
    init_noise_sigma: jnp.ndarray
41
42
43
44
    timesteps: jnp.ndarray
    num_inference_steps: Optional[int] = None

    @classmethod
45
46
    def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray):
        return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps)
47
48
49


@dataclass
50
class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput):
51
52
53
    state: DDPMSchedulerState


54
class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
55
56
57
58
59
60
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
61
62
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
80
81
82
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
83
84
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            the `dtype` used for params and computation.
85
86
    """

Kashif Rasul's avatar
Kashif Rasul committed
87
    _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
88

89
90
    dtype: jnp.dtype

91
92
93
94
    @property
    def has_state(self):
        return True

95
96
97
98
99
100
101
102
103
104
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
105
        prediction_type: str = "epsilon",
106
        dtype: jnp.dtype = jnp.float32,
107
    ):
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        self.dtype = dtype

    def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDPMSchedulerState:
        if common is None:
            common = CommonSchedulerState.create(self)

        # standard deviation of the initial noise distribution
        init_noise_sigma = jnp.array(1.0, dtype=self.dtype)

        timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]

        return DDPMSchedulerState.create(
            common=common,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
124

125
126
127
128
129
130
131
132
    def scale_model_input(
        self, state: DDPMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Args:
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep
133

134
135
136
137
        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample
138

139
140
141
    def set_timesteps(
        self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple = ()
    ) -> DDPMSchedulerState:
142
143
144
145
146
147
148
149
150
151
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DDIMSchedulerState`):
                the `FlaxDDPMScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """

152
153
154
155
156
157
158
159
160
161
162
163
164
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # rounding to avoid issues when num_inference_step is power of 3
        timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1]

        return state.replace(
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
        )

    def _get_variance(self, state: DDPMSchedulerState, t, predicted_variance=None, variance_type=None):
        alpha_prod_t = state.common.alphas_cumprod[t]
        alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype))
165
166
167
168

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
169
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
170
171
172
173
174
175
176
177
178
179
180

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = jnp.clip(variance, a_min=1e-20)
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = jnp.log(jnp.clip(variance, a_min=1e-20))
        elif variance_type == "fixed_large":
181
            variance = state.common.betas[t]
182
183
        elif variance_type == "fixed_large_log":
            # Glide max_log
184
            variance = jnp.log(state.common.betas[t])
185
186
187
188
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
189
            max_log = state.common.betas[t]
190
191
192
193
194
195
196
197
198
199
200
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def step(
        self,
        state: DDPMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
201
        key: Optional[jax.random.KeyArray] = None,
202
        return_dict: bool = True,
203
    ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
204
205
206
207
208
209
210
211
212
213
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
214
            key (`jax.random.KeyArray`): a PRNG key.
215
            return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class
216
217

        Returns:
218
219
            [`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
220
221
222
223

        """
        t = timestep

224
225
226
        if key is None:
            key = jax.random.PRNGKey(0)

227
        if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
228
229
230
231
232
            model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
233
234
        alpha_prod_t = state.common.alphas_cumprod[t]
        alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype))
235
236
237
238
239
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
240
        if self.config.prediction_type == "epsilon":
241
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
242
        elif self.config.prediction_type == "sample":
243
            pred_original_sample = model_output
244
245
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
246
247
248
249
250
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` "
                " for the FlaxDDPMScheduler."
            )
251
252
253
254
255
256
257

        # 3. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = jnp.clip(pred_original_sample, -1, 1)

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
258
259
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * state.common.betas[t]) / beta_prod_t
        current_sample_coeff = state.common.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
260
261
262
263
264
265

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
266
267
268
269
270
271
        def random_variance():
            split_key = jax.random.split(key, num=1)
            noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype)
            return (self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5) * noise

        variance = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype))
272
273
274
275
276
277

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (pred_prev_sample, state)

278
        return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state)
279
280
281

    def add_noise(
        self,
282
        state: DDPMSchedulerState,
283
284
285
286
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
287
        return add_noise_common(state.common, original_samples, noise, timesteps)
288

289
290
291
292
293
294
295
296
297
    def get_velocity(
        self,
        state: DDPMSchedulerState,
        sample: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
        return get_velocity_common(state.common, sample, noise, timesteps)

298
299
    def __len__(self):
        return self.config.num_train_timesteps