scheduling_ddpm_flax.py 12.7 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
import jax.numpy as jnp
from jax import random

25
26
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
from ..utils import deprecate
27
from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray:
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return jnp.array(betas, dtype=jnp.float32)


@flax.struct.dataclass
class DDPMSchedulerState:
    # setable values
    timesteps: jnp.ndarray
    num_inference_steps: Optional[int] = None

    @classmethod
    def create(cls, num_train_timesteps: int):
        return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1])


@dataclass
71
class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput):
72
73
74
    state: DDPMSchedulerState


75
class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
    [`~ConfigMixin.from_config`] functions.

    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
101
102
        predict_epsilon (`bool`):
            optional flag to use when the model predicts the noise (epsilon), or the samples instead of the noise.
103
104
105

    """

106
107
108
109
    @property
    def has_state(self):
        return True

110
111
112
113
114
115
116
117
118
119
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
120
        predict_epsilon: bool = True,
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    ):
        if trained_betas is not None:
            self.betas = jnp.asarray(trained_betas)
        elif beta_schedule == "linear":
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
        self.one = jnp.array(1.0)

139
140
    def create_state(self):
        return DDPMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps)
141

142
143
144
    def set_timesteps(
        self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple = ()
    ) -> DDPMSchedulerState:
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DDIMSchedulerState`):
                the `FlaxDDPMScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
        timesteps = jnp.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps
        )[::-1]
        return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps)

    def _get_variance(self, t, predicted_variance=None, variance_type=None):
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = jnp.clip(variance, a_min=1e-20)
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = jnp.log(jnp.clip(variance, a_min=1e-20))
        elif variance_type == "fixed_large":
            variance = self.betas[t]
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = jnp.log(self.betas[t])
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def step(
        self,
        state: DDPMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        key: random.KeyArray,
        predict_epsilon: bool = True,
        return_dict: bool = True,
202
        **kwargs,
203
    ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
204
205
206
207
208
209
210
211
212
213
214
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            key (`random.KeyArray`): a PRNG key.
215
            return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class
216
217

        Returns:
218
219
            [`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
220
221

        """
222
223
224
225
226
227
228
229
230
231
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
            " DDPMScheduler.from_config(<model_id>, predict_epsilon=True)`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None and predict_epsilon != self.config.predict_epsilon:
            new_config = dict(self.config)
            new_config["predict_epsilon"] = predict_epsilon
            self._internal_dict = FrozenDict(new_config)

232
233
        t = timestep

234
        if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
235
236
237
238
239
240
241
242
243
244
245
246
            model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
247
        if self.config.predict_epsilon:
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = model_output

        # 3. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = jnp.clip(pred_original_sample, -1, 1)

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            key = random.split(key, num=1)
            noise = random.normal(key=key, shape=model_output.shape)
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (pred_prev_sample, state)

277
        return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state)
278
279
280
281
282
283
284
285

    def add_noise(
        self,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
286
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
287
        sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape)
288

289
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
290
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
291
        sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape)
292
293
294
295
296
297

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps