cross_attention.py 27.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Callable, Optional, Union
15
16
17
18
19

import torch
import torch.nn.functional as F
from torch import nn

20
from ..utils import deprecate, logging
21
22
23
from ..utils.import_utils import is_xformers_available


24
25
26
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class CrossAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
59
        cross_attention_norm: bool = False,
60
61
62
63
64
65
66
67
68
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
        processor: Optional["AttnProcessor"] = None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
69
        self.cross_attention_norm = cross_attention_norm
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

        self.scale = dim_head**-0.5

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
        else:
            self.group_norm = None

86
87
88
        if cross_attention_norm:
            self.norm_cross = nn.LayerNorm(cross_attention_dim)

89
90
91
92
93
94
95
96
97
98
99
100
101
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
102
        # We use the AttnProcessor2_0 by default when torch2.x is used which uses
103
104
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        if processor is None:
105
            processor = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else CrossAttnProcessor()
106
107
        self.set_processor(processor)

108
109
110
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
111
112
113
114
        is_lora = hasattr(self, "processor") and isinstance(
            self.processor, (LoRACrossAttnProcessor, LoRAXFormersCrossAttnProcessor)
        )

115
116
117
118
119
120
121
122
123
124
125
        if use_memory_efficient_attention_xformers:
            if self.added_kv_proj_dim is not None:
                # TODO(Anton, Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                raise NotImplementedError(
                    "Memory efficient attention with `xformers` is currently not supported when"
                    " `self.added_kv_proj_dim` is defined."
                )
            elif not is_xformers_available():
                raise ModuleNotFoundError(
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

148
149
150
151
152
153
154
155
156
157
158
            if is_lora:
                processor = LoRAXFormersCrossAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
            else:
                processor = XFormersCrossAttnProcessor(attention_op=attention_op)
159
        else:
160
161
162
163
164
165
166
167
168
169
            if is_lora:
                processor = LoRACrossAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
            else:
                processor = CrossAttnProcessor()
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

        self.set_processor(processor)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = CrossAttnAddedKVProcessor()
        else:
            processor = CrossAttnProcessor()

        self.set_processor(processor)

    def set_processor(self, processor: "AttnProcessor"):
189
190
191
192
193
194
195
196
197
198
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        self.processor = processor

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
        # The `CrossAttention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def head_to_batch_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def get_attention_scores(self, query, key, attention_mask=None):
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

Will Berman's avatar
Will Berman committed
233
234
235
236
237
238
239
240
241
        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

242
        attention_scores = torch.baddbmm(
Will Berman's avatar
Will Berman committed
243
            baddbmm_input,
244
245
            query,
            key.transpose(-1, -2),
Will Berman's avatar
Will Berman committed
246
            beta=beta,
247
248
249
250
251
252
253
254
255
256
257
            alpha=self.scale,
        )

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        attention_probs = attention_probs.to(dtype)

        return attention_probs

258
259
260
261
262
    def prepare_attention_mask(self, attention_mask, target_length, batch_size=None):
        if batch_size is None:
            deprecate(
                "batch_size=None",
                "0.0.15",
263
                (
264
265
266
267
268
269
270
                    "Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
                    " attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
                    " `prepare_attention_mask` when preparing the attention_mask."
                ),
            )
            batch_size = 1

271
272
273
274
275
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        if attention_mask.shape[-1] != target_length:
276
277
278
279
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
280
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
281
                attention_mask = torch.cat([attention_mask, padding], dim=2)
282
283
            else:
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
284
285

        if attention_mask.shape[0] < batch_size * head_size:
286
287
288
289
290
            attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        return attention_mask


class CrossAttnProcessor:
291
292
293
294
295
296
297
    def __call__(
        self,
        attn: CrossAttention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
    ):
298
        batch_size, sequence_length, _ = hidden_states.shape
299
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
300
301
        query = attn.to_q(hidden_states)

302
303
304
305
306
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

307
308
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Will Berman's avatar
Will Berman committed
309
310

        query = attn.head_to_batch_dim(query)
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4):
        super().__init__()

        if rank > min(in_features, out_features):
            raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")

        self.down = nn.Linear(in_features, rank, bias=False)
        self.up = nn.Linear(rank, out_features, bias=False)

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        return up_hidden_states.to(orig_dtype)


class LoRACrossAttnProcessor(nn.Module):
    def __init__(self, hidden_size, cross_attention_dim=None, rank=4):
        super().__init__()

353
354
355
356
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

357
358
359
360
        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
361
362
363
364
365

    def __call__(
        self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
    ):
        batch_size, sequence_length, _ = hidden_states.shape
366
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


391
392
393
394
395
396
397
class CrossAttnAddedKVProcessor:
    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape
        encoder_hidden_states = encoder_hidden_states.transpose(1, 2)

398
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

415
416
        key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
        value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


class XFormersCrossAttnProcessor:
434
435
436
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

437
438
439
    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

440
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
441
442
443

        query = attn.to_q(hidden_states)

444
445
446
447
448
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

449
450
451
452
453
454
455
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

456
457
458
        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
459
460
461
462
463
464
465
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
466
467
468
        return hidden_states


469
class AttnProcessor2_0:
470
471
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
472
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, inner_dim = hidden_states.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


513
class LoRAXFormersCrossAttnProcessor(nn.Module):
514
    def __init__(self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None):
515
516
        super().__init__()

517
518
519
520
521
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank
        self.attention_op = attention_op

522
523
524
525
        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
526
527
528
529
530

    def __call__(
        self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
    ):
        batch_size, sequence_length, _ = hidden_states.shape
531
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
532
533
534
535
536
537
538
539
540
541
542
543

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query).contiguous()

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

544
545
546
        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
547
        hidden_states = attn.batch_to_head_dim(hidden_states)
548
549
550
551
552

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
553
554
555
556
557
558
559
560
561
562
563

        return hidden_states


class SlicedAttnProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

564
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
565
566
567
568
569

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

570
571
572
573
574
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(hidden_states.shape[0] // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class SlicedAttnAddedKVProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: "CrossAttention", hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        encoder_hidden_states = encoder_hidden_states.transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

620
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

638
639
        key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
        value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(hidden_states.shape[0] // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


AttnProcessor = Union[
    CrossAttnProcessor,
    XFormersCrossAttnProcessor,
    SlicedAttnProcessor,
    CrossAttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
679
680
    LoRACrossAttnProcessor,
    LoRAXFormersCrossAttnProcessor,
681
]