cross_attention.py 21.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Callable, Optional, Union
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

import torch
import torch.nn.functional as F
from torch import nn

from ..utils.import_utils import is_xformers_available


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class CrossAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
        processor: Optional["AttnProcessor"] = None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax

        self.scale = dim_head**-0.5

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
        else:
            self.group_norm = None

        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        processor = processor if processor is not None else CrossAttnProcessor()
        self.set_processor(processor)

96
97
98
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
99
100
101
102
103
104
105
106
107
108
109
        if use_memory_efficient_attention_xformers:
            if self.added_kv_proj_dim is not None:
                # TODO(Anton, Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                raise NotImplementedError(
                    "Memory efficient attention with `xformers` is currently not supported when"
                    " `self.added_kv_proj_dim` is defined."
                )
            elif not is_xformers_available():
                raise ModuleNotFoundError(
110
111
112
113
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

132
            processor = XFormersCrossAttnProcessor(attention_op=attention_op)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        else:
            processor = CrossAttnProcessor()

        self.set_processor(processor)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = CrossAttnAddedKVProcessor()
        else:
            processor = CrossAttnProcessor()

        self.set_processor(processor)

    def set_processor(self, processor: "AttnProcessor"):
        self.processor = processor

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
        # The `CrossAttention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def head_to_batch_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def get_attention_scores(self, query, key, attention_mask=None):
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

Will Berman's avatar
Will Berman committed
188
189
190
191
192
193
194
195
196
        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

197
        attention_scores = torch.baddbmm(
Will Berman's avatar
Will Berman committed
198
            baddbmm_input,
199
200
            query,
            key.transpose(-1, -2),
Will Berman's avatar
Will Berman committed
201
            beta=beta,
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            alpha=self.scale,
        )

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        attention_probs = attention_probs.to(dtype)

        return attention_probs

    def prepare_attention_mask(self, attention_mask, target_length):
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        if attention_mask.shape[-1] != target_length:
219
220
221
222
223
224
225
226
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, device=attention_mask.device)
                attention_mask = torch.concat([attention_mask, padding], dim=2)
            else:
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
            attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        return attention_mask


class CrossAttnProcessor:
    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        query = attn.to_q(hidden_states)

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Will Berman's avatar
Will Berman committed
241
242

        query = attn.head_to_batch_dim(query)
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4):
        super().__init__()

        if rank > min(in_features, out_features):
            raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")

        self.down = nn.Linear(in_features, rank, bias=False)
        self.up = nn.Linear(rank, out_features, bias=False)
        self.scale = 1.0

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        return up_hidden_states.to(orig_dtype)


class LoRACrossAttnProcessor(nn.Module):
    def __init__(self, hidden_size, cross_attention_dim=None, rank=4):
        super().__init__()

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size)

    def __call__(
        self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
    ):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
class CrossAttnAddedKVProcessor:
    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape
        encoder_hidden_states = encoder_hidden_states.transpose(1, 2)

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
        value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


class XFormersCrossAttnProcessor:
363
364
365
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        query = attn.to_q(hidden_states)

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

381
382
383
        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
384
385
386
387
388
389
390
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        return hidden_states


class LoRAXFormersCrossAttnProcessor(nn.Module):
    def __init__(self, hidden_size, cross_attention_dim, rank=4):
        super().__init__()

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size)

    def __call__(
        self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
    ):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query).contiguous()

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

        return hidden_states


class SlicedAttnProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(hidden_states.shape[0] // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class SlicedAttnAddedKVProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: "CrossAttention", hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        encoder_hidden_states = encoder_hidden_states.transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
        value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)

        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(hidden_states.shape[0] // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


AttnProcessor = Union[
    CrossAttnProcessor,
    XFormersCrossAttnProcessor,
    SlicedAttnProcessor,
    CrossAttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
]