single_file.py 13 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from huggingface_hub.utils import validate_hf_hub_args
16

17
18
19
20
21
22
23
24
25
26
27
28
from ..utils import is_transformers_available, logging
from .single_file_utils import (
    create_diffusers_unet_model_from_ldm,
    create_diffusers_vae_model_from_ldm,
    create_scheduler_from_ldm,
    create_text_encoders_and_tokenizers_from_ldm,
    fetch_ldm_config_and_checkpoint,
    infer_model_type,
)


logger = logging.get_logger(__name__)
29

30
31
32
33
34
35
# Pipelines that support the SDXL Refiner checkpoint
REFINER_PIPELINES = [
    "StableDiffusionXLImg2ImgPipeline",
    "StableDiffusionXLInpaintPipeline",
    "StableDiffusionXLControlNetImg2ImgPipeline",
]
36
37

if is_transformers_available():
38
39
40
41
42
43
44
45
46
47
48
49
50
    from transformers import AutoFeatureExtractor


def build_sub_model_components(
    pipeline_components,
    pipeline_class_name,
    component_name,
    original_config,
    checkpoint,
    local_files_only=False,
    load_safety_checker=False,
    model_type=None,
    image_size=None,
51
    torch_dtype=None,
52
53
54
55
56
57
58
59
    **kwargs,
):
    if component_name in pipeline_components:
        return {}

    if component_name == "unet":
        num_in_channels = kwargs.pop("num_in_channels", None)
        unet_components = create_diffusers_unet_model_from_ldm(
60
61
62
63
64
65
            pipeline_class_name,
            original_config,
            checkpoint,
            num_in_channels=num_in_channels,
            image_size=image_size,
            torch_dtype=torch_dtype,
66
            model_type=model_type,
67
68
        )
        return unet_components
69

70
    if component_name == "vae":
71
        scaling_factor = kwargs.get("scaling_factor", None)
72
        vae_components = create_diffusers_vae_model_from_ldm(
73
74
75
76
77
78
79
            pipeline_class_name,
            original_config,
            checkpoint,
            image_size,
            scaling_factor,
            torch_dtype,
            model_type=model_type,
80
81
        )
        return vae_components
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    if component_name == "scheduler":
        scheduler_type = kwargs.get("scheduler_type", "ddim")
        prediction_type = kwargs.get("prediction_type", None)

        scheduler_components = create_scheduler_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            scheduler_type=scheduler_type,
            prediction_type=prediction_type,
            model_type=model_type,
        )

        return scheduler_components

    if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
        text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
            original_config,
            checkpoint,
            model_type=model_type,
            local_files_only=local_files_only,
104
            torch_dtype=torch_dtype,
105
106
107
108
109
110
111
112
        )
        return text_encoder_components

    if component_name == "safety_checker":
        if load_safety_checker:
            from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

            safety_checker = StableDiffusionSafetyChecker.from_pretrained(
113
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            )
        else:
            safety_checker = None
        return {"safety_checker": safety_checker}

    if component_name == "feature_extractor":
        if load_safety_checker:
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
        else:
            feature_extractor = None
        return {"feature_extractor": feature_extractor}

    return


def set_additional_components(
    pipeline_class_name,
    original_config,
134
    checkpoint=None,
135
136
137
138
    model_type=None,
):
    components = {}
    if pipeline_class_name in REFINER_PIPELINES:
139
        model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)
140
141
142
143
144
145
146
147
148
        is_refiner = model_type == "SDXL-Refiner"
        components.update(
            {
                "requires_aesthetics_score": is_refiner,
                "force_zeros_for_empty_prompt": False if is_refiner else True,
            }
        )

    return components
149
150
151
152
153
154
155
156


class FromSingleFileMixin:
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """

    @classmethod
157
    @validate_hf_hub_args
158
159
160
161
162
163
164
165
166
167
168
169
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
170
                Override the default `torch.dtype` and load the model with another dtype.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
186
            token (`str` or *bool*, *optional*):
187
188
189
190
191
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
            original_config_file (`str`, *optional*):
                The path to the original config file that was used to train the model. If not provided, the config file
                will be inferred from the checkpoint file.
            model_type (`str`, *optional*):
                The type of model to load. If not provided, the model type will be inferred from the checkpoint file.
            image_size (`int`, *optional*):
                The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE model.
            load_safety_checker (`bool`, *optional*, defaults to `False`):
                Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a `safety_checker` component is passed to the `kwargs`.
            num_in_channels (`int`, *optional*):
                Specify the number of input channels for the UNet model. Read more about how to configure UNet model with this parameter
                [here](https://huggingface.co/docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters).
            scaling_factor (`float`, *optional*):
                The scaling factor to use for the VAE model. If not provided, it is inferred from the config file first.
                If the scaling factor is not found in the config file, the default value 0.18215 is used.
            scheduler_type (`str`, *optional*):
                The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint file.
            prediction_type (`str`, *optional*):
                The type of prediction to load. If not provided, the prediction type will be inferred from the checkpoint file.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        original_config_file = kwargs.pop("original_config_file", None)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
242
        token = kwargs.pop("token", None)
243
244
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", False)
245
246
247
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

248
        class_name = cls.__name__
249

250
251
252
        original_config, checkpoint = fetch_ldm_config_and_checkpoint(
            pretrained_model_link_or_path=pretrained_model_link_or_path,
            class_name=class_name,
253
            original_config_file=original_config_file,
254
255
256
257
258
            resume_download=resume_download,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
259
            local_files_only=local_files_only,
260
            cache_dir=cache_dir,
261
262
        )

263
        from ..pipelines.pipeline_utils import _get_pipeline_class
264

265
266
267
268
        pipeline_class = _get_pipeline_class(
            cls,
            config=None,
            cache_dir=cache_dir,
269
270
        )

271
272
273
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
274

275
        model_type = kwargs.pop("model_type", None)
276
        image_size = kwargs.pop("image_size", None)
277
278
279
        load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
            passed_class_obj.get("safety_checker", None) is not None
        )
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        init_kwargs = {}
        for name in expected_modules:
            if name in passed_class_obj:
                init_kwargs[name] = passed_class_obj[name]
            else:
                components = build_sub_model_components(
                    init_kwargs,
                    class_name,
                    name,
                    original_config,
                    checkpoint,
                    model_type=model_type,
                    image_size=image_size,
                    load_safety_checker=load_safety_checker,
                    local_files_only=local_files_only,
296
                    torch_dtype=torch_dtype,
297
298
299
300
301
                    **kwargs,
                )
                if not components:
                    continue
                init_kwargs.update(components)
302

303
304
305
        additional_components = set_additional_components(class_name, original_config, model_type=model_type)
        if additional_components:
            init_kwargs.update(additional_components)
306

307
308
        init_kwargs.update(passed_pipe_kwargs)
        pipe = pipeline_class(**init_kwargs)
309
310

        if torch_dtype is not None:
311
            pipe.to(dtype=torch_dtype)
312

313
        return pipe