"vscode:/vscode.git/clone" did not exist on "d87cc15977b87160c30abaace3894e802ad9e1e6"
vae_flax.py 19.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers

import math
from functools import partial
from typing import Tuple

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..modeling_flax_utils import FlaxModelMixin
from ..utils import BaseOutput


@flax.struct.dataclass
class FlaxDecoderOutput(BaseOutput):
    """
    Output of decoding method.

    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            Decoded output sample of the model. Output of the last layer of the model.
    """

    sample: jnp.ndarray


@flax.struct.dataclass
class FlaxAutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
37
38
39
        latent_dist (`FlaxDiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`.
            `FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution.
40
41
    """

42
    latent_dist: "FlaxDiagonalGaussianDistribution"
43
44


45
class FlaxUpsample2D(nn.Module):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        batch, height, width, channels = hidden_states.shape
        hidden_states = jax.image.resize(
            hidden_states,
            shape=(batch, height * 2, width * 2, channels),
            method="nearest",
        )
        hidden_states = self.conv(hidden_states)
        return hidden_states


69
class FlaxDownsample2D(nn.Module):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(2, 2),
            padding="VALID",
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        pad = ((0, 0), (0, 1), (0, 1), (0, 0))  # pad height and width dim
        hidden_states = jnp.pad(hidden_states, pad_width=pad)
        hidden_states = self.conv(hidden_states)
        return hidden_states


89
class FlaxResnetBlock2D(nn.Module):
90
91
    in_channels: int
    out_channels: int = None
92
    dropout: float = 0.0
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    use_nin_shortcut: bool = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        out_channels = self.in_channels if self.out_channels is None else self.out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv1 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
109
        self.dropout_layer = nn.Dropout(self.dropout)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.conv2 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut

        self.conv_shortcut = None
        if use_nin_shortcut:
            self.conv_shortcut = nn.Conv(
                out_channels,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )

    def __call__(self, hidden_states, deterministic=True):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = nn.swish(hidden_states)
138
        hidden_states = self.dropout_layer(hidden_states, deterministic)
139
140
141
142
143
144
145
146
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            residual = self.conv_shortcut(residual)

        return hidden_states + residual


147
class FlaxAttentionBlock(nn.Module):
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    channels: int
    num_head_channels: int = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1

        dense = partial(nn.Dense, self.channels, dtype=self.dtype)

        self.group_norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.query, self.key, self.value = dense(), dense(), dense()
        self.proj_attn = dense()

    def transpose_for_scores(self, projection):
        new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
        new_projection = projection.reshape(new_projection_shape)
        # (B, T, H, D) -> (B, H, T, D)
        new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
        return new_projection

    def __call__(self, hidden_states):
        residual = hidden_states
        batch, height, width, channels = hidden_states.shape

        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.reshape((batch, height * width, channels))

        query = self.query(hidden_states)
        key = self.key(hidden_states)
        value = self.value(hidden_states)

        # transpose
        query = self.transpose_for_scores(query)
        key = self.transpose_for_scores(key)
        value = self.transpose_for_scores(value)

        # compute attentions
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
        attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
        attn_weights = nn.softmax(attn_weights, axis=-1)

        # attend to values
        hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)

        hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
        new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
        hidden_states = hidden_states.reshape(new_hidden_states_shape)

        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.reshape((batch, height, width, channels))
        hidden_states = hidden_states + residual
        return hidden_states


204
class FlaxDownEncoderBlock2D(nn.Module):
205
206
207
208
209
210
211
212
213
214
215
216
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

217
            res_block = FlaxResnetBlock2D(
218
219
                in_channels=in_channels,
                out_channels=self.out_channels,
220
                dropout=self.dropout,
221
222
223
224
225
226
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
227
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
228
229
230
231
232
233

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_downsample:
234
            hidden_states = self.downsamplers_0(hidden_states)
235
236
237
238

        return hidden_states


239
class FlaxUpEncoderBlock2D(nn.Module):
240
241
242
243
244
245
246
247
248
249
250
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels
251
            res_block = FlaxResnetBlock2D(
252
253
                in_channels=in_channels,
                out_channels=self.out_channels,
254
                dropout=self.dropout,
255
256
257
258
259
260
261
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
262
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
263
264
265
266
267
268

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_upsample:
269
            hidden_states = self.upsamplers_0(hidden_states)
270
271
272
273

        return hidden_states


274
class FlaxUNetMidBlock2D(nn.Module):
275
276
277
278
279
280
281
282
283
    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # there is always at least one resnet
        resnets = [
284
            FlaxResnetBlock2D(
285
286
                in_channels=self.in_channels,
                out_channels=self.in_channels,
287
                dropout=self.dropout,
288
289
290
291
292
293
294
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
295
            attn_block = FlaxAttentionBlock(
296
297
298
299
                channels=self.in_channels, num_head_channels=self.attn_num_head_channels, dtype=self.dtype
            )
            attentions.append(attn_block)

300
            res_block = FlaxResnetBlock2D(
301
302
                in_channels=self.in_channels,
                out_channels=self.in_channels,
303
                dropout=self.dropout,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        return hidden_states


320
class FlaxEncoder(nn.Module):
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"
    double_z: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        block_out_channels = self.block_out_channels
        # in
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # downsampling
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, _ in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

350
            down_block = FlaxDownEncoderBlock2D(
351
352
353
354
355
356
357
358
359
360
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block,
                add_downsample=not is_final_block,
                dtype=self.dtype,
            )
            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # middle
361
        self.mid_block = FlaxUNetMidBlock2D(
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            in_channels=block_out_channels[-1], attn_num_head_channels=None, dtype=self.dtype
        )

        # end
        conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv_out = nn.Conv(
            conv_out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # in
        sample = self.conv_in(sample)

        # downsampling
        for block in self.down_blocks:
            sample = block(sample, deterministic=deterministic)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # end
        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


395
class FlaxDecoder(nn.Module):
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    dtype: jnp.dtype = jnp.float32
    in_channels: int = 3
    out_channels: int = 3
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: int = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"

    def setup(self):
        block_out_channels = self.block_out_channels

        # z to block_in
        self.conv_in = nn.Conv(
            block_out_channels[-1],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # middle
418
        self.mid_block = FlaxUNetMidBlock2D(
419
420
421
422
423
424
425
426
427
428
429
430
431
            in_channels=block_out_channels[-1], attn_num_head_channels=None, dtype=self.dtype
        )

        # upsampling
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        up_blocks = []
        for i, _ in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

432
            up_block = FlaxUpEncoderBlock2D(
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                in_channels=prev_output_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block + 1,
                add_upsample=not is_final_block,
                dtype=self.dtype,
            )
            up_blocks.append(up_block)
            prev_output_channel = output_channel

        self.up_blocks = up_blocks

        # end
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # z to block_in
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # upsampling
        for block in self.up_blocks:
            sample = block(sample, deterministic=deterministic)

        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


472
class FlaxDiagonalGaussianDistribution(object):
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def __init__(self, parameters, deterministic=False):
        # Last axis to account for channels-last
        self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
        self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = jnp.exp(0.5 * self.logvar)
        self.var = jnp.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = jnp.zeros_like(self.mean)

    def sample(self, key):
        return self.mean + self.std * jax.random.normal(key, self.mean.shape)

    def kl(self, other=None):
        if self.deterministic:
            return jnp.array([0.0])

        if other is None:
            return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])

        return 0.5 * jnp.sum(
            jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
            axis=[1, 2, 3],
        )

    def nll(self, sample, axis=[1, 2, 3]):
        if self.deterministic:
            return jnp.array([0.0])

        logtwopi = jnp.log(2.0 * jnp.pi)
        return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)

    def mode(self):
        return self.mean


@flax_register_to_config
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 1
    act_fn: str = "silu"
    latent_channels: int = 4
    norm_num_groups: int = 32
    sample_size: int = 32
    dtype: jnp.dtype = jnp.float32

    def setup(self):
524
        self.encoder = FlaxEncoder(
525
526
527
528
529
530
531
532
533
534
            in_channels=self.config.in_channels,
            out_channels=self.config.latent_channels,
            down_block_types=self.config.down_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            act_fn=self.config.act_fn,
            norm_num_groups=self.config.norm_num_groups,
            double_z=True,
            dtype=self.dtype,
        )
535
        self.decoder = FlaxDecoder(
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            in_channels=self.config.latent_channels,
            out_channels=self.config.out_channels,
            up_block_types=self.config.up_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            norm_num_groups=self.config.norm_num_groups,
            act_fn=self.config.act_fn,
            dtype=self.dtype,
        )
        self.quant_conv = nn.Conv(
            2 * self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )
        self.post_quant_conv = nn.Conv(
            self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

    def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict:
        # init input tensors
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)

        params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
        rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}

        return self.init(rngs, sample)["params"]

    def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
        sample = jnp.transpose(sample, (0, 2, 3, 1))

        hidden_states = self.encoder(sample, deterministic=deterministic)
        moments = self.quant_conv(hidden_states)
575
        posterior = FlaxDiagonalGaussianDistribution(moments)
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

        if not return_dict:
            return (posterior,)

        return FlaxAutoencoderKLOutput(latent_dist=posterior)

    def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
        if latents.shape[-1] != self.config.latent_channels:
            latents = jnp.transpose(latents, (0, 2, 3, 1))

        hidden_states = self.post_quant_conv(latents)
        hidden_states = self.decoder(hidden_states, deterministic=deterministic)

        hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))

        if not return_dict:
            return (hidden_states,)

        return FlaxDecoderOutput(sample=hidden_states)

    def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
        posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
        if sample_posterior:
            rng = self.make_rng("gaussian")
            hidden_states = posterior.latent_dist.sample(rng)
        else:
            hidden_states = posterior.latent_dist.mode()
603
604

        sample = self.decode(hidden_states, return_dict=return_dict).sample
605
606
607
608
609

        if not return_dict:
            return (sample,)

        return FlaxDecoderOutput(sample=sample)