vae_flax.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers

import math
from functools import partial
from typing import Tuple

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..modeling_flax_utils import FlaxModelMixin
from ..utils import BaseOutput


@flax.struct.dataclass
class FlaxDecoderOutput(BaseOutput):
    """
    Output of decoding method.

    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            Decoded output sample of the model. Output of the last layer of the model.
    """

    sample: jnp.ndarray


@flax.struct.dataclass
class FlaxAutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
        latent_dist (`DiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
            `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
    """

    latent_dist: "DiagonalGaussianDistribution"


class Upsample2D(nn.Module):
    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        batch, height, width, channels = hidden_states.shape
        hidden_states = jax.image.resize(
            hidden_states,
            shape=(batch, height * 2, width * 2, channels),
            method="nearest",
        )
        hidden_states = self.conv(hidden_states)
        return hidden_states


class Downsample2D(nn.Module):
    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(2, 2),
            padding="VALID",
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        pad = ((0, 0), (0, 1), (0, 1), (0, 0))  # pad height and width dim
        hidden_states = jnp.pad(hidden_states, pad_width=pad)
        hidden_states = self.conv(hidden_states)
        return hidden_states


class ResnetBlock2D(nn.Module):
    in_channels: int
    out_channels: int = None
    dropout_prob: float = 0.0
    use_nin_shortcut: bool = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        out_channels = self.in_channels if self.out_channels is None else self.out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv1 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.dropout = nn.Dropout(self.dropout_prob)
        self.conv2 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut

        self.conv_shortcut = None
        if use_nin_shortcut:
            self.conv_shortcut = nn.Conv(
                out_channels,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )

    def __call__(self, hidden_states, deterministic=True):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            residual = self.conv_shortcut(residual)

        return hidden_states + residual


class AttentionBlock(nn.Module):
    channels: int
    num_head_channels: int = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1

        dense = partial(nn.Dense, self.channels, dtype=self.dtype)

        self.group_norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.query, self.key, self.value = dense(), dense(), dense()
        self.proj_attn = dense()

    def transpose_for_scores(self, projection):
        new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
        new_projection = projection.reshape(new_projection_shape)
        # (B, T, H, D) -> (B, H, T, D)
        new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
        return new_projection

    def __call__(self, hidden_states):
        residual = hidden_states
        batch, height, width, channels = hidden_states.shape

        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.reshape((batch, height * width, channels))

        query = self.query(hidden_states)
        key = self.key(hidden_states)
        value = self.value(hidden_states)

        # transpose
        query = self.transpose_for_scores(query)
        key = self.transpose_for_scores(key)
        value = self.transpose_for_scores(value)

        # compute attentions
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
        attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
        attn_weights = nn.softmax(attn_weights, axis=-1)

        # attend to values
        hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)

        hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
        new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
        hidden_states = hidden_states.reshape(new_hidden_states_shape)

        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.reshape((batch, height, width, channels))
        hidden_states = hidden_states + residual
        return hidden_states


class DownEncoderBlock2D(nn.Module):
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = ResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
            self.downsample = Downsample2D(self.out_channels, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_downsample:
            hidden_states = self.downsample(hidden_states)

        return hidden_states


class UpEncoderBlock2D(nn.Module):
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels
            res_block = ResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
            self.upsample = Upsample2D(self.out_channels, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_upsample:
            hidden_states = self.upsample(hidden_states)

        return hidden_states


class UNetMidBlock2D(nn.Module):
    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
            attn_block = AttentionBlock(
                channels=self.in_channels, num_head_channels=self.attn_num_head_channels, dtype=self.dtype
            )
            attentions.append(attn_block)

            res_block = ResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        return hidden_states


class Encoder(nn.Module):
    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"
    double_z: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        block_out_channels = self.block_out_channels
        # in
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # downsampling
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, _ in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = DownEncoderBlock2D(
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block,
                add_downsample=not is_final_block,
                dtype=self.dtype,
            )
            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # middle
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1], attn_num_head_channels=None, dtype=self.dtype
        )

        # end
        conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv_out = nn.Conv(
            conv_out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # in
        sample = self.conv_in(sample)

        # downsampling
        for block in self.down_blocks:
            sample = block(sample, deterministic=deterministic)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # end
        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


class Decoder(nn.Module):
    dtype: jnp.dtype = jnp.float32
    in_channels: int = 3
    out_channels: int = 3
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: int = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"

    def setup(self):
        block_out_channels = self.block_out_channels

        # z to block_in
        self.conv_in = nn.Conv(
            block_out_channels[-1],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # middle
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1], attn_num_head_channels=None, dtype=self.dtype
        )

        # upsampling
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        up_blocks = []
        for i, _ in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = UpEncoderBlock2D(
                in_channels=prev_output_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block + 1,
                add_upsample=not is_final_block,
                dtype=self.dtype,
            )
            up_blocks.append(up_block)
            prev_output_channel = output_channel

        self.up_blocks = up_blocks

        # end
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # z to block_in
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # upsampling
        for block in self.up_blocks:
            sample = block(sample, deterministic=deterministic)

        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        # Last axis to account for channels-last
        self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
        self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = jnp.exp(0.5 * self.logvar)
        self.var = jnp.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = jnp.zeros_like(self.mean)

    def sample(self, key):
        return self.mean + self.std * jax.random.normal(key, self.mean.shape)

    def kl(self, other=None):
        if self.deterministic:
            return jnp.array([0.0])

        if other is None:
            return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])

        return 0.5 * jnp.sum(
            jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
            axis=[1, 2, 3],
        )

    def nll(self, sample, axis=[1, 2, 3]):
        if self.deterministic:
            return jnp.array([0.0])

        logtwopi = jnp.log(2.0 * jnp.pi)
        return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)

    def mode(self):
        return self.mean


@flax_register_to_config
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 1
    act_fn: str = "silu"
    latent_channels: int = 4
    norm_num_groups: int = 32
    sample_size: int = 32
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.encoder = Encoder(
            in_channels=self.config.in_channels,
            out_channels=self.config.latent_channels,
            down_block_types=self.config.down_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            act_fn=self.config.act_fn,
            norm_num_groups=self.config.norm_num_groups,
            double_z=True,
            dtype=self.dtype,
        )
        self.decoder = Decoder(
            in_channels=self.config.latent_channels,
            out_channels=self.config.out_channels,
            up_block_types=self.config.up_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            norm_num_groups=self.config.norm_num_groups,
            act_fn=self.config.act_fn,
            dtype=self.dtype,
        )
        self.quant_conv = nn.Conv(
            2 * self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )
        self.post_quant_conv = nn.Conv(
            self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

    def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict:
        # init input tensors
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)

        params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
        rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}

        return self.init(rngs, sample)["params"]

    def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
        sample = jnp.transpose(sample, (0, 2, 3, 1))

        hidden_states = self.encoder(sample, deterministic=deterministic)
        moments = self.quant_conv(hidden_states)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return FlaxAutoencoderKLOutput(latent_dist=posterior)

    def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
        if latents.shape[-1] != self.config.latent_channels:
            latents = jnp.transpose(latents, (0, 2, 3, 1))

        hidden_states = self.post_quant_conv(latents)
        hidden_states = self.decoder(hidden_states, deterministic=deterministic)

        hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))

        if not return_dict:
            return (hidden_states,)

        return FlaxDecoderOutput(sample=hidden_states)

    def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
        posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
        if sample_posterior:
            rng = self.make_rng("gaussian")
            hidden_states = posterior.latent_dist.sample(rng)
        else:
            hidden_states = posterior.latent_dist.mode()
        hidden_states = self.decode(hidden_states, return_dict=return_dict).sample

        if not return_dict:
            return (sample,)

        return FlaxDecoderOutput(sample=sample)