textual_inversion.py 36.4 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

Suraj Patil's avatar
Suraj Patil committed
16
import argparse
Suraj Patil's avatar
Suraj Patil committed
17
import logging
Suraj Patil's avatar
Suraj Patil committed
18
19
20
import math
import os
import random
21
import warnings
Suraj Patil's avatar
Suraj Patil committed
22
23
24
from pathlib import Path

import numpy as np
25
import PIL
Suraj Patil's avatar
Suraj Patil committed
26
27
28
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
29
import transformers
Suraj Patil's avatar
Suraj Patil committed
30
31
from accelerate import Accelerator
from accelerate.logging import get_logger
32
from accelerate.utils import ProjectConfiguration, set_seed
33
from huggingface_hub import create_repo, upload_folder
34
35
36
37
38
39
40
41
42
43

# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

import diffusers
44
45
46
47
48
49
50
51
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
Suraj Patil's avatar
Suraj Patil committed
52
from diffusers.optimization import get_scheduler
53
from diffusers.utils import check_min_version, is_wandb_available
54
from diffusers.utils.import_utils import is_xformers_available
Suraj Patil's avatar
Suraj Patil committed
55

Patrick von Platen's avatar
Patrick von Platen committed
56

57
58
59
if is_wandb_available():
    import wandb

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------

Suraj Patil's avatar
Suraj Patil committed
78

79
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
80
check_min_version("0.17.0.dev0")
81

Suraj Patil's avatar
Suraj Patil committed
82
83
84
logger = get_logger(__name__)


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def save_model_card(repo_id: str, images=None, base_model=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
    """
    model_card = f"""
# Textual inversion text2image fine-tuning - {repo_id}
These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


113
114
115
116
117
118
119
120
121
122
123
124
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=unet,
        vae=vae,
125
        safety_checker=None,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()
156
    return images
157
158


159
def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path):
160
    logger.info("Saving embeddings")
161
162
163
164
165
    learned_embeds = (
        accelerator.unwrap_model(text_encoder)
        .get_input_embeddings()
        .weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1]
    )
166
    learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
167
    torch.save(learned_embeds_dict, save_path)
168
169


Suraj Patil's avatar
Suraj Patil committed
170
171
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
172
173
174
175
176
177
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
178
    parser.add_argument(
179
        "--save_as_full_pipeline",
180
        action="store_true",
181
        help="Save the complete stable diffusion pipeline.",
182
    )
183
184
185
186
187
188
    parser.add_argument(
        "--num_vectors",
        type=int,
        default=1,
        help="How many textual inversion vectors shall be used to learn the concept.",
    )
Suraj Patil's avatar
Suraj Patil committed
189
190
191
192
193
194
195
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
196
197
198
199
200
201
202
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
Suraj Patil's avatar
Suraj Patil committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
241
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
Suraj Patil's avatar
Suraj Patil committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
259
260
261
262
263
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
Suraj Patil's avatar
Suraj Patil committed
264
265
266
267
268
269
270
271
272
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
273
        default=False,
Suraj Patil's avatar
Suraj Patil committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
288
289
290
291
292
293
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
294
295
296
297
298
299
300
301
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
334
335
336
337
338
339
340
341
342
343
344
345
346
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
347
348
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
349
350
        ),
    )
351
352
353
354
355
356
357
358
359
360
361
362
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
363
364
365
366
367
368
369
370
371
372
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
373
374
375
    parser.add_argument(
        "--validation_epochs",
        type=int,
376
        default=None,
377
        help=(
378
            "Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt"
379
380
381
382
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
383
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
384
385
386
387
388
389
390
391
392
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
393
    parser.add_argument(
394
        "--checkpoints_total_limit",
395
396
397
398
399
400
401
402
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
403
404
405
406
407
408
409
410
411
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
412
413
414
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
Suraj Patil's avatar
Suraj Patil committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
511
512
513
514
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
Suraj Patil's avatar
Suraj Patil committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
Patrick von Platen's avatar
Patrick von Platen committed
546
547
548
549
            (
                h,
                w,
            ) = (
Suraj Patil's avatar
Suraj Patil committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def main():
    args = parse_args()
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

570
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
571

Suraj Patil's avatar
Suraj Patil committed
572
573
574
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
575
        log_with=args.report_to,
Suraj Patil's avatar
Suraj Patil committed
576
        logging_dir=logging_dir,
577
        project_config=accelerator_project_config,
Suraj Patil's avatar
Suraj Patil committed
578
579
    )

580
581
582
583
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

Suraj Patil's avatar
Suraj Patil committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

Suraj Patil's avatar
Suraj Patil committed
598
599
600
601
602
603
    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
604
        if args.output_dir is not None:
Suraj Patil's avatar
Suraj Patil committed
605
606
            os.makedirs(args.output_dir, exist_ok=True)

607
608
609
610
611
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

Suraj Patil's avatar
Suraj Patil committed
612
    # Load tokenizer
Suraj Patil's avatar
Suraj Patil committed
613
    if args.tokenizer_name:
614
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
Suraj Patil's avatar
Suraj Patil committed
615
    elif args.pretrained_model_name_or_path:
616
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
617

Suraj Patil's avatar
Suraj Patil committed
618
619
620
621
622
623
624
625
626
627
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

628
    # Add the placeholder token in tokenizer
629
630
631
632
633
634
635
636
637
638
639
640
641
    placeholder_tokens = [args.placeholder_token]

    if args.num_vectors < 1:
        raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}")

    # add dummy tokens for multi-vector
    additional_tokens = []
    for i in range(1, args.num_vectors):
        additional_tokens.append(f"{args.placeholder_token}_{i}")
    placeholder_tokens += additional_tokens

    num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
    if num_added_tokens != args.num_vectors:
642
643
644
        raise ValueError(
            f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
            " `placeholder_token` that is not already in the tokenizer."
Suraj Patil's avatar
Suraj Patil committed
645
646
647
648
649
650
651
652
653
        )

    # Convert the initializer_token, placeholder_token to ids
    token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
    # Check if initializer_token is a single token or a sequence of tokens
    if len(token_ids) > 1:
        raise ValueError("The initializer token must be a single token.")

    initializer_token_id = token_ids[0]
654
    placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
Suraj Patil's avatar
Suraj Patil committed
655
656
657
658
659
660

    # Resize the token embeddings as we are adding new special tokens to the tokenizer
    text_encoder.resize_token_embeddings(len(tokenizer))

    # Initialise the newly added placeholder token with the embeddings of the initializer token
    token_embeds = text_encoder.get_input_embeddings().weight.data
661
662
663
    with torch.no_grad():
        for token_id in placeholder_token_ids:
            token_embeds[token_id] = token_embeds[initializer_token_id].clone()
Suraj Patil's avatar
Suraj Patil committed
664
665

    # Freeze vae and unet
666
667
    vae.requires_grad_(False)
    unet.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
668
    # Freeze all parameters except for the token embeddings in text encoder
669
670
671
    text_encoder.text_model.encoder.requires_grad_(False)
    text_encoder.text_model.final_layer_norm.requires_grad_(False)
    text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
672

Suraj Patil's avatar
Suraj Patil committed
673
674
675
676
677
678
679
680
681
    if args.gradient_checkpointing:
        # Keep unet in train mode if we are using gradient checkpointing to save memory.
        # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
        unet.train()
        text_encoder.gradient_checkpointing_enable()
        unet.enable_gradient_checkpointing()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
682
683
684
685
686
687
688
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
Suraj Patil's avatar
Suraj Patil committed
689
690
691
692
693
694
695
696
697
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

Suraj Patil's avatar
Suraj Patil committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    optimizer = torch.optim.AdamW(
        text_encoder.get_input_embeddings().parameters(),  # only optimize the embeddings
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
712
    # Dataset and DataLoaders creation:
Suraj Patil's avatar
Suraj Patil committed
713
714
715
716
717
718
719
720
721
722
    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
        placeholder_token=args.placeholder_token,
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )
723
724
725
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
726
727
728
729
730
731
732
733
734
    if args.validation_epochs is not None:
        warnings.warn(
            f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}."
            " Deprecated validation_epochs in favor of `validation_steps`"
            f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}",
            FutureWarning,
            stacklevel=2,
        )
        args.validation_steps = args.validation_epochs * len(train_dataset)
Suraj Patil's avatar
Suraj Patil committed
735
736
737
738
739
740
741
742
743
744
745
746
747

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
748
        num_cycles=args.lr_num_cycles * args.gradient_accumulation_steps,
Suraj Patil's avatar
Suraj Patil committed
749
750
    )

Suraj Patil's avatar
Suraj Patil committed
751
    # Prepare everything with our `accelerator`.
Suraj Patil's avatar
Suraj Patil committed
752
753
754
755
    text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        text_encoder, optimizer, train_dataloader, lr_scheduler
    )

756
    # For mixed precision training we cast the unet and vae weights to half-precision
Suraj Patil's avatar
Suraj Patil committed
757
    # as these models are only used for inference, keeping weights in full precision is not required.
758
759
760
761
762
763
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
764
    # Move vae and unet to device and cast to weight_dtype
765
766
    unet.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("textual_inversion", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
790
791
    global_step = 0
    first_epoch = 0
Suraj Patil's avatar
Suraj Patil committed
792
    # Potentially load in the weights and states from a previous save
793
794
795
796
797
798
799
800
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
816

Suraj Patil's avatar
Suraj Patil committed
817
    # Only show the progress bar once on each machine.
818
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
Suraj Patil's avatar
Suraj Patil committed
819
820
    progress_bar.set_description("Steps")

821
    # keep original embeddings as reference
822
    orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone()
823

824
    for epoch in range(first_epoch, args.num_train_epochs):
Suraj Patil's avatar
Suraj Patil committed
825
826
        text_encoder.train()
        for step, batch in enumerate(train_dataloader):
827
828
829
830
831
832
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

Suraj Patil's avatar
Suraj Patil committed
833
834
            with accelerator.accumulate(text_encoder):
                # Convert images to latent space
835
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach()
836
                latents = latents * vae.config.scaling_factor
Suraj Patil's avatar
Suraj Patil committed
837
838

                # Sample noise that we'll add to the latents
839
                noise = torch.randn_like(latents)
Suraj Patil's avatar
Suraj Patil committed
840
841
                bsz = latents.shape[0]
                # Sample a random timestep for each image
842
843
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
Suraj Patil's avatar
Suraj Patil committed
844
845
846
847
848
849

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
850
                encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
851
852

                # Predict the noise residual
853
854
855
856
857
858
859
860
861
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
Suraj Patil's avatar
Suraj Patil committed
862

863
864
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

Suraj Patil's avatar
Suraj Patil committed
865
866
867
868
869
870
                accelerator.backward(loss)

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

871
                # Let's make sure we don't update any embedding weights besides the newly added token
872
873
874
                index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
                index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False

875
                with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
876
877
878
                    accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
                        index_no_updates
                    ] = orig_embeds_params[index_no_updates]
879

Suraj Patil's avatar
Suraj Patil committed
880
881
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
882
                images = []
Suraj Patil's avatar
Suraj Patil committed
883
884
                progress_bar.update(1)
                global_step += 1
885
                if global_step % args.save_steps == 0:
886
                    save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin")
887
                    save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path)
Suraj Patil's avatar
Suraj Patil committed
888

889
890
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
891
892
893
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
894
895

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
896
897
898
                        images = log_validation(
                            text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch
                        )
899

Suraj Patil's avatar
Suraj Patil committed
900
901
902
903
904
905
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break
906
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
907
    accelerator.wait_for_everyone()
Suraj Patil's avatar
Suraj Patil committed
908
    if accelerator.is_main_process:
909
        if args.push_to_hub and not args.save_as_full_pipeline:
910
911
912
            logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
            save_full_model = True
        else:
913
            save_full_model = args.save_as_full_pipeline
914
        if save_full_model:
915
916
            pipeline = StableDiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
917
918
919
920
921
922
923
                text_encoder=accelerator.unwrap_model(text_encoder),
                vae=vae,
                unet=unet,
                tokenizer=tokenizer,
            )
            pipeline.save_pretrained(args.output_dir)
        # Save the newly trained embeddings
924
        save_path = os.path.join(args.output_dir, "learned_embeds.bin")
925
        save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path)
Suraj Patil's avatar
Suraj Patil committed
926
927

        if args.push_to_hub:
928
929
930
931
932
933
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
934
935
936
937
938
939
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
Suraj Patil's avatar
Suraj Patil committed
940
941
942
943
944
945

    accelerator.end_training()


if __name__ == "__main__":
    main()