"projects/TridentNet/configs/Base-TridentNet-Fast-C4.yaml" did not exist on "5b3792fc3ef9ab6a6f8f30634ab2e52fb0941af3"
test_gguf.py 28.5 KB
Newer Older
1
2
3
4
5
6
7
8
import gc
import unittest

import numpy as np
import torch
import torch.nn as nn

from diffusers import (
9
10
    AuraFlowPipeline,
    AuraFlowTransformer2DModel,
11
    DiffusionPipeline,
hlky's avatar
hlky committed
12
    FluxControlPipeline,
13
14
15
    FluxPipeline,
    FluxTransformer2DModel,
    GGUFQuantizationConfig,
16
    HiDreamImageTransformer2DModel,
17
18
    SD3Transformer2DModel,
    StableDiffusion3Pipeline,
19
    WanAnimateTransformer3DModel,
20
21
    WanTransformer3DModel,
    WanVACETransformer3DModel,
22
)
hlky's avatar
hlky committed
23
from diffusers.utils import load_image
24
25

from ...testing_utils import (
26
27
28
29
30
    Expectations,
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    enable_full_determinism,
31
32
33
34
    is_gguf_available,
    nightly,
    numpy_cosine_similarity_distance,
    require_accelerate,
35
    require_accelerator,
36
    require_big_accelerator,
37
    require_gguf_version_greater_or_equal,
38
    require_kernels_version_greater_or_equal,
hlky's avatar
hlky committed
39
    require_peft_backend,
40
    require_torch_version_greater,
41
42
    torch_device,
)
43
44
from ..test_torch_compile_utils import QuantCompileTests

45
46

if is_gguf_available():
47
48
    import gguf

49
50
    from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter

51
52
enable_full_determinism()

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
@nightly
@require_accelerate
@require_accelerator
@require_gguf_version_greater_or_equal("0.10.0")
@require_kernels_version_greater_or_equal("0.9.0")
class GGUFCudaKernelsTests(unittest.TestCase):
    def setUp(self):
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)

    def test_cuda_kernels_vs_native(self):
        if torch_device != "cuda":
            self.skipTest("CUDA kernels test requires CUDA device")

        from diffusers.quantizers.gguf.utils import GGUFLinear, can_use_cuda_kernels

        if not can_use_cuda_kernels:
            self.skipTest("CUDA kernels not available (compute capability < 7 or kernels not installed)")

        test_quant_types = ["Q4_0", "Q4_K"]
        test_shape = (1, 64, 512)  # batch, seq_len, hidden_dim
        compute_dtype = torch.bfloat16

        for quant_type in test_quant_types:
            qtype = getattr(gguf.GGMLQuantizationType, quant_type)
            in_features, out_features = 512, 512

            torch.manual_seed(42)
            float_weight = torch.randn(out_features, in_features, dtype=torch.float32)
            quantized_data = gguf.quants.quantize(float_weight.numpy(), qtype)
            weight_data = torch.from_numpy(quantized_data).to(device=torch_device)
            weight = GGUFParameter(weight_data, quant_type=qtype)

            x = torch.randn(test_shape, dtype=compute_dtype, device=torch_device)

            linear = GGUFLinear(in_features, out_features, bias=True, compute_dtype=compute_dtype)
            linear.weight = weight
            linear.bias = nn.Parameter(torch.randn(out_features, dtype=compute_dtype))
            linear = linear.to(torch_device)

            with torch.no_grad():
                output_native = linear.forward_native(x)
                output_cuda = linear.forward_cuda(x)

            assert torch.allclose(output_native, output_cuda, 1e-2), (
                f"GGUF CUDA Kernel Output is different from Native Output for {quant_type}"
            )


107
@nightly
108
@require_big_accelerator
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class GGUFSingleFileTesterMixin:
    ckpt_path = None
    model_cls = None
    torch_dtype = torch.bfloat16
    expected_memory_use_in_gb = 5

    def test_gguf_parameters(self):
        quant_storage_type = torch.uint8
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for param_name, param in model.named_parameters():
            if isinstance(param, GGUFParameter):
                assert hasattr(param, "quant_type")
                assert param.dtype == quant_storage_type

    def test_gguf_linear_layers(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"):
                assert module.weight.dtype == torch.uint8
134
                if module.bias is not None:
135
                    assert module.bias.dtype == self.torch_dtype
136
137
138
139
140
141
142

    def test_gguf_memory_usage(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

        model = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
143
        model.to(torch_device)
144
145
146
        assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb
        inputs = self.get_dummy_inputs()

147
148
        backend_reset_peak_memory_stats(torch_device)
        backend_empty_cache(torch_device)
149
150
        with torch.no_grad():
            model(**inputs)
151
        max_memory = backend_max_memory_allocated(torch_device)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        assert (max_memory / 1024**3) < self.expected_memory_use_in_gb

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        _keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules
        self.model_cls._keep_in_fp32_modules = ["proj_out"]

        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    assert module.weight.dtype == torch.float32
        self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules

    def test_dtype_assignment(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            model.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
181
182
            device_0 = f"{torch_device}:0"
            model.to(device=device_0, dtype=torch.float16)
183
184
185
186
187
188
189
190
191
192

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.half()

        # This should work
193
        model.to(torch_device)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    def test_dequantize_model(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
        model.dequantize()

        def _check_for_gguf_linear(model):
            has_children = list(model.children())
            if not has_children:
                return

            for name, module in model.named_children():
                if isinstance(module, nn.Linear):
                    assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear"
                    assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter"

        for name, module in model.named_children():
            _check_for_gguf_linear(module)


class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
216
    diffusers_ckpt_path = "https://huggingface.co/sayakpaul/flux-diffusers-gguf/blob/main/model-Q4_0.gguf"
217
218
219
220
221
222
    torch_dtype = torch.bfloat16
    model_cls = FluxTransformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
223
        backend_empty_cache(torch_device)
224
225
226

    def tearDown(self):
        gc.collect()
227
        backend_empty_cache(torch_device)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 768),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
            "img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.47265625,
                0.43359375,
                0.359375,
                0.47070312,
                0.421875,
                0.34375,
                0.46875,
                0.421875,
                0.34765625,
                0.46484375,
                0.421875,
                0.34179688,
                0.47070312,
                0.42578125,
                0.34570312,
                0.46875,
                0.42578125,
                0.3515625,
                0.45507812,
                0.4140625,
                0.33984375,
                0.4609375,
                0.41796875,
                0.34375,
                0.45898438,
                0.41796875,
                0.34375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4

301
302
303
304
305
306
307
    def test_loading_gguf_diffusers_format(self):
        model = self.model_cls.from_single_file(
            self.diffusers_ckpt_path,
            subfolder="transformer",
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            config="black-forest-labs/FLUX.1-dev",
        )
308
        model.to(torch_device)
309
310
        model(**self.get_dummy_inputs())

311
312
313
314
315
316
317
318
319

class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
320
        backend_empty_cache(torch_device)
321
322
323

    def tearDown(self):
        gc.collect()
324
        backend_empty_cache(torch_device)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
354
355
356
357
            prompt=prompt,
            num_inference_steps=2,
            generator=torch.Generator("cpu").manual_seed(0),
            output_type="np",
358
359
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
360
361
362
363
        expected_slices = Expectations(
            {
                ("xpu", 3): np.array(
                    [
364
365
                        0.16796875,
                        0.27929688,
366
                        0.28320312,
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
                        0.11328125,
                        0.27539062,
                        0.26171875,
                        0.10742188,
                        0.26367188,
                        0.26171875,
                        0.1484375,
                        0.2734375,
                        0.296875,
                        0.13476562,
                        0.2890625,
                        0.30078125,
                        0.1171875,
                        0.28125,
                        0.28125,
                        0.16015625,
                        0.31445312,
                        0.30078125,
                        0.15625,
386
                        0.32421875,
387
388
389
390
                        0.296875,
                        0.14453125,
                        0.30859375,
                        0.2890625,
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                    ]
                ),
                ("cuda", 7): np.array(
                    [
                        0.17578125,
                        0.27539062,
                        0.27734375,
                        0.11914062,
                        0.26953125,
                        0.25390625,
                        0.109375,
                        0.25390625,
                        0.25,
                        0.15039062,
                        0.26171875,
                        0.28515625,
                        0.13671875,
                        0.27734375,
                        0.28515625,
                        0.12109375,
                        0.26757812,
                        0.265625,
                        0.16210938,
                        0.29882812,
                        0.28515625,
                        0.15625,
                        0.30664062,
                        0.27734375,
                        0.14648438,
                        0.29296875,
                        0.26953125,
                    ]
                ),
            }
425
        )
426
        expected_slice = expected_slices.get_expectation()
427
428
429
430
431
432
433
434
435
436
437
438
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 2

    def setUp(self):
        gc.collect()
439
        backend_empty_cache(torch_device)
440
441
442

    def tearDown(self):
        gc.collect()
443
        backend_empty_cache(torch_device)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.625,
                0.6171875,
                0.609375,
                0.65625,
                0.65234375,
                0.640625,
                0.6484375,
                0.640625,
                0.625,
                0.6484375,
                0.63671875,
                0.6484375,
                0.66796875,
                0.65625,
                0.65234375,
                0.6640625,
                0.6484375,
                0.6328125,
                0.6640625,
                0.6484375,
                0.640625,
                0.67578125,
                0.66015625,
                0.62109375,
                0.671875,
                0.65625,
                0.62109375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
509
510
511
512
513
514
515
516
517
518


class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = AuraFlowTransformer2DModel
    expected_memory_use_in_gb = 4

    def setUp(self):
        gc.collect()
519
        backend_empty_cache(torch_device)
520
521
522

    def tearDown(self):
        gc.collect()
523
        backend_empty_cache(torch_device)
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = AuraFlowPipeline.from_pretrained(
            "fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a pony holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.46484375,
                0.546875,
                0.64453125,
                0.48242188,
                0.53515625,
                0.59765625,
                0.47070312,
                0.5078125,
                0.5703125,
                0.42773438,
                0.50390625,
                0.5703125,
                0.47070312,
                0.515625,
                0.57421875,
                0.45898438,
                0.48632812,
                0.53515625,
                0.4453125,
                0.5078125,
                0.56640625,
                0.47851562,
                0.5234375,
                0.57421875,
                0.48632812,
                0.5234375,
                0.56640625,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
hlky's avatar
hlky committed
585
586
587
588


@require_peft_backend
@nightly
589
@require_big_accelerator
hlky's avatar
hlky committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class FluxControlLoRAGGUFTests(unittest.TestCase):
    def test_lora_loading(self):
        ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
        transformer = FluxTransformer2DModel.from_single_file(
            ckpt_path,
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            torch_dtype=torch.bfloat16,
        )
        pipe = FluxControlPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            transformer=transformer,
            torch_dtype=torch.bfloat16,
604
        ).to(torch_device)
hlky's avatar
hlky committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
        control_image = load_image(
            "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/control_image_robot_canny.png"
        )

        output = pipe(
            prompt=prompt,
            control_image=control_image,
            height=256,
            width=256,
            num_inference_steps=10,
            guidance_scale=30.0,
            output_type="np",
            generator=torch.manual_seed(0),
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.8047, 0.8359, 0.8711, 0.6875, 0.7070, 0.7383, 0.5469, 0.5820, 0.6641])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654


class HiDreamGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = HiDreamImageTransformer2DModel
    expected_memory_use_in_gb = 8

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 128, 128), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states_t5": torch.randn(
                (1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "encoder_hidden_states_llama3": torch.randn(
                (32, 1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_embeds": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timesteps": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }
655
656
657
658
659
660
661
662
663
664


class WanGGUFTexttoVideoSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/blob/main/wan2.1-t2v-14b-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanTransformer3DModel
    expected_memory_use_in_gb = 9

    def get_dummy_inputs(self):
        return {
665
            "hidden_states": torch.randn((1, 16, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }


class WanGGUFImagetoVideoSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/blob/main/wan2.1-i2v-14b-480p-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanTransformer3DModel
    expected_memory_use_in_gb = 9

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 36, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "encoder_hidden_states_image": torch.randn(
                (1, 257, 1280), generator=torch.Generator("cpu").manual_seed(0)
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }


class WanVACEGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanVACETransformer3DModel
    expected_memory_use_in_gb = 9

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states": torch.randn(
                (1, 96, 2, 64, 64),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states_scale": torch.randn(
                (8,),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }


class WanAnimateGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/QuantStack/Wan2.2-Animate-14B-GGUF/blob/main/Wan2.2-Animate-14B-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanAnimateTransformer3DModel
    expected_memory_use_in_gb = 9

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states": torch.randn(
                (1, 96, 2, 64, 64),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states_scale": torch.randn(
                (8,),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }
750
751
752


@require_torch_version_greater("2.7.1")
753
class GGUFCompileTests(QuantCompileTests, unittest.TestCase):
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    torch_dtype = torch.bfloat16
    gguf_ckpt = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"

    @property
    def quantization_config(self):
        return GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

    def _init_pipeline(self, *args, **kwargs):
        transformer = FluxTransformer2DModel.from_single_file(
            self.gguf_ckpt, quantization_config=self.quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        return pipe