test_gguf.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
import gc
import unittest

import numpy as np
import torch
import torch.nn as nn

from diffusers import (
9
10
    AuraFlowPipeline,
    AuraFlowTransformer2DModel,
hlky's avatar
hlky committed
11
    FluxControlPipeline,
12
13
14
15
16
17
    FluxPipeline,
    FluxTransformer2DModel,
    GGUFQuantizationConfig,
    SD3Transformer2DModel,
    StableDiffusion3Pipeline,
)
hlky's avatar
hlky committed
18
from diffusers.utils import load_image
19
from diffusers.utils.testing_utils import (
20
21
22
23
24
    Expectations,
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    enable_full_determinism,
25
26
27
28
    is_gguf_available,
    nightly,
    numpy_cosine_similarity_distance,
    require_accelerate,
29
    require_big_accelerator,
30
    require_gguf_version_greater_or_equal,
hlky's avatar
hlky committed
31
    require_peft_backend,
32
33
34
35
36
37
38
    torch_device,
)


if is_gguf_available():
    from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter

39
40
enable_full_determinism()

41
42

@nightly
43
@require_big_accelerator
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class GGUFSingleFileTesterMixin:
    ckpt_path = None
    model_cls = None
    torch_dtype = torch.bfloat16
    expected_memory_use_in_gb = 5

    def test_gguf_parameters(self):
        quant_storage_type = torch.uint8
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for param_name, param in model.named_parameters():
            if isinstance(param, GGUFParameter):
                assert hasattr(param, "quant_type")
                assert param.dtype == quant_storage_type

    def test_gguf_linear_layers(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"):
                assert module.weight.dtype == torch.uint8
69
                if module.bias is not None:
70
                    assert module.bias.dtype == self.torch_dtype
71
72
73
74
75
76
77

    def test_gguf_memory_usage(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

        model = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
78
        model.to(torch_device)
79
80
81
        assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb
        inputs = self.get_dummy_inputs()

82
83
        backend_reset_peak_memory_stats(torch_device)
        backend_empty_cache(torch_device)
84
85
        with torch.no_grad():
            model(**inputs)
86
        max_memory = backend_max_memory_allocated(torch_device)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        assert (max_memory / 1024**3) < self.expected_memory_use_in_gb

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        _keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules
        self.model_cls._keep_in_fp32_modules = ["proj_out"]

        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    assert module.weight.dtype == torch.float32
        self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules

    def test_dtype_assignment(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            model.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
116
117
            device_0 = f"{torch_device}:0"
            model.to(device=device_0, dtype=torch.float16)
118
119
120
121
122
123
124
125
126
127

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.half()

        # This should work
128
        model.to(torch_device)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    def test_dequantize_model(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
        model.dequantize()

        def _check_for_gguf_linear(model):
            has_children = list(model.children())
            if not has_children:
                return

            for name, module in model.named_children():
                if isinstance(module, nn.Linear):
                    assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear"
                    assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter"

        for name, module in model.named_children():
            _check_for_gguf_linear(module)


class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = FluxTransformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
157
        backend_empty_cache(torch_device)
158
159
160

    def tearDown(self):
        gc.collect()
161
        backend_empty_cache(torch_device)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 768),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
            "img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.47265625,
                0.43359375,
                0.359375,
                0.47070312,
                0.421875,
                0.34375,
                0.46875,
                0.421875,
                0.34765625,
                0.46484375,
                0.421875,
                0.34179688,
                0.47070312,
                0.42578125,
                0.34570312,
                0.46875,
                0.42578125,
                0.3515625,
                0.45507812,
                0.4140625,
                0.33984375,
                0.4609375,
                0.41796875,
                0.34375,
                0.45898438,
                0.41796875,
                0.34375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
244
        backend_empty_cache(torch_device)
245
246
247

    def tearDown(self):
        gc.collect()
248
        backend_empty_cache(torch_device)
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
278
279
280
281
            prompt=prompt,
            num_inference_steps=2,
            generator=torch.Generator("cpu").manual_seed(0),
            output_type="np",
282
283
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        expected_slices = Expectations(
            {
                ("xpu", 3): np.array(
                    [
                        0.19335938,
                        0.3125,
                        0.3203125,
                        0.1328125,
                        0.3046875,
                        0.296875,
                        0.11914062,
                        0.2890625,
                        0.2890625,
                        0.16796875,
                        0.30273438,
                        0.33203125,
                        0.14648438,
                        0.31640625,
                        0.33007812,
                        0.12890625,
                        0.3046875,
                        0.30859375,
                        0.17773438,
                        0.33789062,
                        0.33203125,
                        0.16796875,
                        0.34570312,
                        0.32421875,
                        0.15625,
                        0.33203125,
                        0.31445312,
                    ]
                ),
                ("cuda", 7): np.array(
                    [
                        0.17578125,
                        0.27539062,
                        0.27734375,
                        0.11914062,
                        0.26953125,
                        0.25390625,
                        0.109375,
                        0.25390625,
                        0.25,
                        0.15039062,
                        0.26171875,
                        0.28515625,
                        0.13671875,
                        0.27734375,
                        0.28515625,
                        0.12109375,
                        0.26757812,
                        0.265625,
                        0.16210938,
                        0.29882812,
                        0.28515625,
                        0.15625,
                        0.30664062,
                        0.27734375,
                        0.14648438,
                        0.29296875,
                        0.26953125,
                    ]
                ),
            }
349
        )
350
        expected_slice = expected_slices.get_expectation()
351
352
353
354
355
356
357
358
359
360
361
362
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 2

    def setUp(self):
        gc.collect()
363
        backend_empty_cache(torch_device)
364
365
366

    def tearDown(self):
        gc.collect()
367
        backend_empty_cache(torch_device)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.625,
                0.6171875,
                0.609375,
                0.65625,
                0.65234375,
                0.640625,
                0.6484375,
                0.640625,
                0.625,
                0.6484375,
                0.63671875,
                0.6484375,
                0.66796875,
                0.65625,
                0.65234375,
                0.6640625,
                0.6484375,
                0.6328125,
                0.6640625,
                0.6484375,
                0.640625,
                0.67578125,
                0.66015625,
                0.62109375,
                0.671875,
                0.65625,
                0.62109375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
433
434
435
436
437
438
439
440
441
442


class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = AuraFlowTransformer2DModel
    expected_memory_use_in_gb = 4

    def setUp(self):
        gc.collect()
443
        backend_empty_cache(torch_device)
444
445
446

    def tearDown(self):
        gc.collect()
447
        backend_empty_cache(torch_device)
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = AuraFlowPipeline.from_pretrained(
            "fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a pony holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.46484375,
                0.546875,
                0.64453125,
                0.48242188,
                0.53515625,
                0.59765625,
                0.47070312,
                0.5078125,
                0.5703125,
                0.42773438,
                0.50390625,
                0.5703125,
                0.47070312,
                0.515625,
                0.57421875,
                0.45898438,
                0.48632812,
                0.53515625,
                0.4453125,
                0.5078125,
                0.56640625,
                0.47851562,
                0.5234375,
                0.57421875,
                0.48632812,
                0.5234375,
                0.56640625,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
hlky's avatar
hlky committed
509
510
511
512


@require_peft_backend
@nightly
513
@require_big_accelerator
hlky's avatar
hlky committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class FluxControlLoRAGGUFTests(unittest.TestCase):
    def test_lora_loading(self):
        ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
        transformer = FluxTransformer2DModel.from_single_file(
            ckpt_path,
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            torch_dtype=torch.bfloat16,
        )
        pipe = FluxControlPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            transformer=transformer,
            torch_dtype=torch.bfloat16,
528
        ).to(torch_device)
hlky's avatar
hlky committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
        control_image = load_image(
            "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/control_image_robot_canny.png"
        )

        output = pipe(
            prompt=prompt,
            control_image=control_image,
            height=256,
            width=256,
            num_inference_steps=10,
            guidance_scale=30.0,
            output_type="np",
            generator=torch.manual_seed(0),
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.8047, 0.8359, 0.8711, 0.6875, 0.7070, 0.7383, 0.5469, 0.5820, 0.6641])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)