resnet.py 29.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
import string
from abc import abstractmethod

import numpy as np
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


73
74
75
76
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
77
78
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
79
80
81
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
82
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
83
84
85
86
87
88
89
90
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
91
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
92
93
94
95
96
97
98
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
99

100
101
102
103
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
104

105
106
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
107

108
109
110
111
112
113
114
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
115
116
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
117
118
119
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
120
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
121
122
123
124
125
126
127
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
128
129
        self.name = name

130
        if use_conv:
patil-suraj's avatar
patil-suraj committed
131
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
132
133
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
134
135
136
137
138
139
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
        else:
            self.op = conv
140
141
142
143
144
145

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
146
147
148
149
150

        if self.name == "conv":
            return self.conv(x)
        else:
            return self.op(x)
151
152


Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# class UNetUpsample(nn.Module):
#    def __init__(self, in_channels, with_conv):
#        super().__init__()
#        self.with_conv = with_conv
#        if self.with_conv:
#            self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
#
#    def forward(self, x):
#        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
#        if self.with_conv:
#            x = self.conv(x)
#        return x
#
#
# class GlideUpsample(nn.Module):
#    """
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param
Patrick von Platen's avatar
up  
Patrick von Platen committed
170
171
# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#
#    def __init__(self, channels, use_conv, dims=2, out_channels=None):
#        super().__init__()
#        self.channels = channels
#        self.out_channels = out_channels or channels
#        self.use_conv = use_conv
#        self.dims = dims
#        if use_conv:
#            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
#
#    def forward(self, x):
#        assert x.shape[1] == self.channels
#        if self.dims == 3:
#            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
#        else:
#            x = F.interpolate(x, scale_factor=2, mode="nearest")
#        if self.use_conv:
#            x = self.conv(x)
#        return x
#
#
# class LDMUpsample(nn.Module):
#    """
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param #
Patrick von Platen's avatar
up  
Patrick von Platen committed
196
197
# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
#    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
#        super().__init__()
#        self.channels = channels
#        self.out_channels = out_channels or channels
#        self.use_conv = use_conv
#        self.dims = dims
#        if use_conv:
#            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
#
#    def forward(self, x):
#        assert x.shape[1] == self.channels
#        if self.dims == 3:
#            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
#        else:
#            x = F.interpolate(x, scale_factor=2, mode="nearest")
#        if self.use_conv:
#            x = self.conv(x)
#        return x
#
#
# class GradTTSUpsample(torch.nn.Module):
#    def __init__(self, dim):
#        super(Upsample, self).__init__()
#        self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
#
#
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
236
237


Patrick von Platen's avatar
Patrick von Platen committed
238
# RESNETS
Patrick von Platen's avatar
Patrick von Platen committed
239

Patrick von Platen's avatar
Patrick von Platen committed
240
241
# unet_glide.py & unet_ldm.py
class ResBlock(TimestepBlock):
242
    """
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
    use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
    on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
    downsampling.
252
253
    """

Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
257
258
259
260
261
262
263
264
265
266
    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
    ):
267
268
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
269
270
        self.emb_channels = emb_channels
        self.dropout = dropout
271
272
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
Patrick von Platen's avatar
Patrick von Platen committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels, swish=1.0),
            nn.Identity(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, use_conv=False, dims=dims)
            self.x_upd = Upsample(channels, use_conv=False, dims=dims)
        elif down:
            self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
            self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
            nn.SiLU() if use_scale_shift_norm else nn.Identity(),
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h
341

Patrick von Platen's avatar
Patrick von Platen committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

# unet.py
class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


# unet_grad_tts.py
class ResnetBlockGradTTS(torch.nn.Module):
    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
        super(ResnetBlockGradTTS, self).__init__()
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
396
        else:
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
            self.res_conv = torch.nn.Identity()

    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
        return output


# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir=False,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir = fir
        self.fir_kernel = fir_kernel

        self.Conv_0 = conv3x3(in_ch, out_ch)
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
            self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
        self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
        if in_ch != out_ch or up or down:
            self.Conv_2 = conv1x1(in_ch, out_ch)

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
            if self.fir:
                h = upsample_2d(h, self.fir_kernel, factor=2)
                x = upsample_2d(x, self.fir_kernel, factor=2)
            else:
                h = naive_upsample_2d(h, factor=2)
                x = naive_upsample_2d(x, factor=2)
        elif self.down:
            if self.fir:
                h = downsample_2d(h, self.fir_kernel, factor=2)
                x = downsample_2d(x, self.fir_kernel, factor=2)
            else:
                h = naive_downsample_2d(h, factor=2)
                x = naive_downsample_2d(x, factor=2)

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


# unet_score_estimation.py
class ResnetBlockDDPMpp(nn.Module):
    """ResBlock adapted from DDPM."""

    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        conv_shortcut=False,
        dropout=0.1,
        skip_rescale=False,
        init_scale=0.0,
    ):
        super().__init__()
        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.Conv_0 = conv3x3(in_ch, out_ch)
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
            self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
            nn.init.zeros_(self.Dense_0.bias)
        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
        self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
        if in_ch != out_ch:
            if conv_shortcut:
                self.Conv_2 = conv3x3(in_ch, out_ch)
            else:
                self.NIN_0 = NIN(in_ch, out_ch)

        self.skip_rescale = skip_rescale
        self.act = act
        self.out_ch = out_ch
        self.conv_shortcut = conv_shortcut

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))
        h = self.Conv_0(h)
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)
        if x.shape[1] != self.out_ch:
            if self.conv_shortcut:
                x = self.Conv_2(x)
            else:
                x = self.NIN_0(x)
        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)
571
572


Patrick von Platen's avatar
Patrick von Platen committed
573
574
575
576
# HELPER Modules


def normalization(channels, swish=0.0):
577
    """
Patrick von Platen's avatar
Patrick von Platen committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
609
    """
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
        )

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask
630

Patrick von Platen's avatar
Patrick von Platen committed
631
632
633
634
635
636
637

class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
638
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
639
640
641
642
643
644
645
646
647
648

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
649
650

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
665
        else:
Patrick von Platen's avatar
Patrick von Platen committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0):
    """1x1 convolution with DDPM initialization."""
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
    conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
    nn.init.zeros_(conv.bias)
    return conv


def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1):
    """3x3 convolution with DDPM initialization."""
    conv = nn.Conv2d(
        in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias
    )
    conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
    nn.init.zeros_(conv.bias)
    return conv


def default_init(scale=1.0):
    """The same initialization used in DDPM."""
    scale = 1e-10 if scale == 0 else scale
    return variance_scaling(scale, "fan_avg", "uniform")


def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
    """Ported from JAX."""

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
        if mode == "fan_in":
            denominator = fan_in
        elif mode == "fan_out":
            denominator = fan_out
        elif mode == "fan_avg":
            denominator = (fan_in + fan_out) / 2
        else:
            raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
        variance = scale / denominator
        if distribution == "normal":
            return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
        elif distribution == "uniform":
            return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
        else:
            raise ValueError("invalid distribution for variance scaling initializer")
719

Patrick von Platen's avatar
Patrick von Platen committed
720
    return init
721
722


Patrick von Platen's avatar
Patrick von Platen committed
723
724
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
725
726


Patrick von Platen's avatar
Patrick von Platen committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def naive_upsample_2d(x, factor=2):
    _N, C, H, W = x.shape
    x = torch.reshape(x, (-1, C, H, 1, W, 1))
    x = x.repeat(1, 1, 1, factor, 1, factor)
    return torch.reshape(x, (-1, C, H * factor, W * factor))


def naive_downsample_2d(x, factor=2):
    _N, C, H, W = x.shape
    x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
    return torch.mean(x, dim=(3, 5))


class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
831
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
832
833
        self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
834
835

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
        x = x.permute(0, 2, 3, 1)
        y = contract_inner(x, self.W) + self.b
        return y.permute(0, 3, 1, 2)


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k


def contract_inner(x, y):
    """tensordot(x, y, 1)."""
    x_chars = list(string.ascii_lowercase[: len(x.shape)])
    y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)])
    y_chars[0] = x_chars[-1]  # first axis of y and last of x get summed
    out_chars = x_chars[:-1] + y_chars[1:]
    return _einsum(x_chars, y_chars, out_chars, x, y)


def _einsum(a, b, c, x, y):
    einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c))
    return torch.einsum(einsum_str, x, y)