pipeline_kandinsky_i2i.py 35.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
# Copyright 2025 The Kandinsky Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import html
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import regex as re
import torch
from torch.nn import functional as F
from transformers import CLIPTextModel, CLIPTokenizer, Qwen2_5_VLForConditionalGeneration, Qwen2VLProcessor

from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import KandinskyLoraLoaderMixin
from ...models import AutoencoderKL
from ...models.transformers import Kandinsky5Transformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler

# Add imports for offloading and tiling
from ...utils import (
    is_ftfy_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import KandinskyImagePipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_ftfy_available():
    import ftfy


logger = logging.get_logger(__name__)

EXAMPLE_DOC_STRING = """
    Examples:

        ```python
        >>> import torch
        >>> from diffusers import Kandinsky5I2IPipeline

        >>> # Available models:
        >>> # kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers
        >>> # kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers

        >>> model_id = "kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers"
        >>> pipe = Kandinsky5I2IPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
        >>> pipe = pipe.to("cuda")

        >>> prompt = "A cat and a dog baking a cake together in a kitchen."

        >>> output = pipe(
        ...     prompt=prompt,
        ...     negative_prompt="",
        ...     height=1024,
        ...     width=1024,
        ...     num_inference_steps=50,
        ...     guidance_scale=3.5,
        ... ).frames[0]
        ```
"""


def basic_clean(text):
    """
    Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py

    Clean text using ftfy if available and unescape HTML entities.
    """
    if is_ftfy_available():
        text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    """
    Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py

    Normalize whitespace in text by replacing multiple spaces with single space.
    """
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


def prompt_clean(text):
    """
    Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py

    Apply both basic cleaning and whitespace normalization to prompts.
    """
    text = whitespace_clean(basic_clean(text))
    return text


class Kandinsky5I2IPipeline(DiffusionPipeline, KandinskyLoraLoaderMixin):
    r"""
    Pipeline for image-to-image generation using Kandinsky 5.0.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        transformer ([`Kandinsky5Transformer3DModel`]):
            Conditional Transformer to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder Model [black-forest-labs/FLUX.1-dev
            (vae)](https://huggingface.co/black-forest-labs/FLUX.1-dev) to encode and decode videos to and from latent
            representations.
        text_encoder ([`Qwen2_5_VLForConditionalGeneration`]):
            Frozen text-encoder [Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
        tokenizer ([`AutoProcessor`]):
            Tokenizer for Qwen2.5-VL.
        text_encoder_2 ([`CLIPTextModel`]):
            Frozen [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel),
            specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer_2 ([`CLIPTokenizer`]):
            Tokenizer for CLIP.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds_qwen",
        "prompt_embeds_clip",
        "negative_prompt_embeds_qwen",
        "negative_prompt_embeds_clip",
    ]

    def __init__(
        self,
        transformer: Kandinsky5Transformer3DModel,
        vae: AutoencoderKL,
        text_encoder: Qwen2_5_VLForConditionalGeneration,
        tokenizer: Qwen2VLProcessor,
        text_encoder_2: CLIPTextModel,
        tokenizer_2: CLIPTokenizer,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            transformer=transformer,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=text_encoder_2,
            tokenizer_2=tokenizer_2,
            scheduler=scheduler,
        )
        self.prompt_template = "<|im_start|>system\nYou are a promt engineer. Based on the provided source image (first image) and target image (second image), create an interesting text prompt that can be used together with the source image to create the target image:<|im_end|><|im_start|>user{}<|vision_start|><|image_pad|><|vision_end|><|im_end|>"
        self.prompt_template_encode_start_idx = 55

        self.vae_scale_factor_spatial = 8
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
        self.resolutions = [(1024, 1024), (640, 1408), (1408, 640), (768, 1280), (1280, 768), (896, 1152), (1152, 896)]

    def _encode_prompt_qwen(
        self,
        prompt: List[str],
        image: Optional[PipelineImageInput] = None,
        device: Optional[torch.device] = None,
        max_sequence_length: int = 1024,
        dtype: Optional[torch.dtype] = None,
    ):
        """
        Encode prompt using Qwen2.5-VL text encoder.

        This method processes the input prompt through the Qwen2.5-VL model to generate text embeddings suitable for
        image generation.

        Args:
            prompt List[str]: Input list of prompts
            image (PipelineImageInput): Input list of images to condition the generation on
            device (torch.device): Device to run encoding on
            max_sequence_length (int): Maximum sequence length for tokenization
            dtype (torch.dtype): Data type for embeddings

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Text embeddings and cumulative sequence lengths
        """
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype
        if not isinstance(image, list):
            image = [image]
        image = [i.resize((i.size[0] // 2, i.size[1] // 2)) for i in image]
        full_texts = [self.prompt_template.format(p) for p in prompt]
        max_allowed_len = self.prompt_template_encode_start_idx + max_sequence_length

        untruncated_ids = self.tokenizer(
            text=full_texts,
            images=image,
            videos=None,
            return_tensors="pt",
            padding="longest",
        )["input_ids"]

        if untruncated_ids.shape[-1] > max_allowed_len:
            for i, text in enumerate(full_texts):
                tokens = untruncated_ids[i]
                num_image_tokens = (tokens == self.tokenizer.image_token_id).sum()
                tokens = tokens[tokens != self.tokenizer.image_token_id][self.prompt_template_encode_start_idx : -3]
                removed_text = self.tokenizer.decode(tokens[max_sequence_length - num_image_tokens - 3 :])
                if len(removed_text) > 0:
                    full_texts[i] = text[: -len(removed_text)]
                    logger.warning(
                        "The following part of your input was truncated because `max_sequence_length` is set to "
                        f" {max_sequence_length} tokens: {removed_text}"
                    )

        inputs = self.tokenizer(
            text=full_texts,
            images=image,
            videos=None,
            max_length=max_allowed_len,
            truncation=True,
            return_tensors="pt",
            padding=True,
        ).to(device)

        embeds = self.text_encoder(
            **inputs,
            return_dict=True,
            output_hidden_states=True,
        )["hidden_states"][-1][:, self.prompt_template_encode_start_idx :]

        attention_mask = inputs["attention_mask"][:, self.prompt_template_encode_start_idx :]
        cu_seqlens = torch.cumsum(attention_mask.sum(1), dim=0)
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0).to(dtype=torch.int32)

        return embeds.to(dtype), cu_seqlens

    def _encode_prompt_clip(
        self,
        prompt: Union[str, List[str]],
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        """
        Encode prompt using CLIP text encoder.

        This method processes the input prompt through the CLIP model to generate pooled embeddings that capture
        semantic information.

        Args:
            prompt (Union[str, List[str]]): Input prompt or list of prompts
            device (torch.device): Device to run encoding on
            dtype (torch.dtype): Data type for embeddings

        Returns:
            torch.Tensor: Pooled text embeddings from CLIP
        """
        device = device or self._execution_device
        dtype = dtype or self.text_encoder_2.dtype

        inputs = self.tokenizer_2(
            prompt,
            max_length=77,
            truncation=True,
            add_special_tokens=True,
            padding="max_length",
            return_tensors="pt",
        ).to(device)

        pooled_embed = self.text_encoder_2(**inputs)["pooler_output"]

        return pooled_embed.to(dtype)

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        image: torch.Tensor,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 1024,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        r"""
        Encodes a single prompt (positive or negative) into text encoder hidden states.

        This method combines embeddings from both Qwen2.5-VL and CLIP text encoders to create comprehensive text
        representations for image generation.

        Args:
            prompt (`str` or `List[str]`):
                Prompt to be encoded.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                Number of images to generate per prompt.
            max_sequence_length (`int`, *optional*, defaults to 1024):
                Maximum sequence length for text encoding. Must be less than 1024
            device (`torch.device`, *optional*):
                Torch device.
            dtype (`torch.dtype`, *optional*):
                Torch dtype.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
                - Qwen text embeddings of shape (batch_size * num_images_per_prompt, sequence_length, embedding_dim)
                - CLIP pooled embeddings of shape (batch_size * num_images_per_prompt, clip_embedding_dim)
                - Cumulative sequence lengths (`cu_seqlens`) for Qwen embeddings of shape (batch_size *
                  num_images_per_prompt + 1,)
        """
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        if not isinstance(prompt, list):
            prompt = [prompt]

        batch_size = len(prompt)

        prompt = [prompt_clean(p) for p in prompt]

        # Encode with Qwen2.5-VL
        prompt_embeds_qwen, prompt_cu_seqlens = self._encode_prompt_qwen(
            prompt=prompt,
            image=image,
            device=device,
            max_sequence_length=max_sequence_length,
            dtype=dtype,
        )
        # prompt_embeds_qwen shape: [batch_size, seq_len, embed_dim]

        # Encode with CLIP
        prompt_embeds_clip = self._encode_prompt_clip(
            prompt=prompt,
            device=device,
            dtype=dtype,
        )
        # prompt_embeds_clip shape: [batch_size, clip_embed_dim]

        # Repeat embeddings for num_images_per_prompt
        # Qwen embeddings: repeat sequence for each image, then reshape
        prompt_embeds_qwen = prompt_embeds_qwen.repeat(
            1, num_images_per_prompt, 1
        )  # [batch_size, seq_len * num_images_per_prompt, embed_dim]
        # Reshape to [batch_size * num_images_per_prompt, seq_len, embed_dim]
        prompt_embeds_qwen = prompt_embeds_qwen.view(
            batch_size * num_images_per_prompt, -1, prompt_embeds_qwen.shape[-1]
        )

        # CLIP embeddings: repeat for each image
        prompt_embeds_clip = prompt_embeds_clip.repeat(
            1, num_images_per_prompt, 1
        )  # [batch_size, num_images_per_prompt, clip_embed_dim]
        # Reshape to [batch_size * num_images_per_prompt, clip_embed_dim]
        prompt_embeds_clip = prompt_embeds_clip.view(batch_size * num_images_per_prompt, -1)

        # Repeat cumulative sequence lengths for num_images_per_prompt
        # Original differences (lengths) for each prompt in the batch
        original_lengths = prompt_cu_seqlens.diff()  # [len1, len2, ...]
        # Repeat the lengths for num_images_per_prompt
        repeated_lengths = original_lengths.repeat_interleave(
            num_images_per_prompt
        )  # [len1, len1, ..., len2, len2, ...]
        # Reconstruct the cumulative lengths
        repeated_cu_seqlens = torch.cat(
            [torch.tensor([0], device=device, dtype=torch.int32), repeated_lengths.cumsum(0)]
        )

        return prompt_embeds_qwen, prompt_embeds_clip, repeated_cu_seqlens

    def check_inputs(
        self,
        prompt,
        negative_prompt,
        image,
        height,
        width,
        prompt_embeds_qwen=None,
        prompt_embeds_clip=None,
        negative_prompt_embeds_qwen=None,
        negative_prompt_embeds_clip=None,
        prompt_cu_seqlens=None,
        negative_prompt_cu_seqlens=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        """
        Validate input parameters for the pipeline.

        Args:
            prompt: Input prompt
            negative_prompt: Negative prompt for guidance
            image: Input image for conditioning
            height: Image height
            width: Image width
            prompt_embeds_qwen: Pre-computed Qwen prompt embeddings
            prompt_embeds_clip: Pre-computed CLIP prompt embeddings
            negative_prompt_embeds_qwen: Pre-computed Qwen negative prompt embeddings
            negative_prompt_embeds_clip: Pre-computed CLIP negative prompt embeddings
            prompt_cu_seqlens: Pre-computed cumulative sequence lengths for Qwen positive prompt
            negative_prompt_cu_seqlens: Pre-computed cumulative sequence lengths for Qwen negative prompt
            callback_on_step_end_tensor_inputs: Callback tensor inputs

        Raises:
            ValueError: If inputs are invalid
        """

        if max_sequence_length is not None and max_sequence_length > 1024:
            raise ValueError("max_sequence_length must be less than 1024")

        if image is None:
            raise ValueError("`image` must be provided for image-to-image generation")

        if (width, height) not in self.resolutions:
            resolutions_str = ",".join([f"({w},{h})" for w, h in self.resolutions])
            logger.warning(
                f"`height` and `width` have to be one of {resolutions_str}, but are {height} and {width}. Dimensions will be resized accordingly"
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        # Check for consistency within positive prompt embeddings and sequence lengths
        if prompt_embeds_qwen is not None or prompt_embeds_clip is not None or prompt_cu_seqlens is not None:
            if prompt_embeds_qwen is None or prompt_embeds_clip is None or prompt_cu_seqlens is None:
                raise ValueError(
                    "If any of `prompt_embeds_qwen`, `prompt_embeds_clip`, or `prompt_cu_seqlens` is provided, "
                    "all three must be provided."
                )

        # Check for consistency within negative prompt embeddings and sequence lengths
        if (
            negative_prompt_embeds_qwen is not None
            or negative_prompt_embeds_clip is not None
            or negative_prompt_cu_seqlens is not None
        ):
            if (
                negative_prompt_embeds_qwen is None
                or negative_prompt_embeds_clip is None
                or negative_prompt_cu_seqlens is None
            ):
                raise ValueError(
                    "If any of `negative_prompt_embeds_qwen`, `negative_prompt_embeds_clip`, or `negative_prompt_cu_seqlens` is provided, "
                    "all three must be provided."
                )

        # Check if prompt or embeddings are provided (either prompt or all required embedding components for positive)
        if prompt is None and prompt_embeds_qwen is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_qwen` (and corresponding `prompt_embeds_clip` and `prompt_cu_seqlens`). Cannot leave all undefined."
            )

        # Validate types for prompt and negative_prompt if provided
        if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        if negative_prompt is not None and (
            not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
        ):
            raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")

    def prepare_latents(
        self,
        image: PipelineImageInput,
        batch_size: int,
        num_channels_latents: int = 16,
        height: int = 1024,
        width: int = 1024,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Prepare initial latent variables for image-to-image generation.

        This method creates random noise latents with encoded image,

        Args:
            image (PipelineImageInput): Input image to condition the generation on
            batch_size (int): Number of images to generate
            num_channels_latents (int): Number of channels in latent space
            height (int): Height of generated image
            width (int): Width of generated image
            dtype (torch.dtype): Data type for latents
            device (torch.device): Device to create latents on
            generator (torch.Generator): Random number generator
            latents (torch.Tensor): Pre-existing latents to use

        Returns:
            torch.Tensor: Prepared latent tensor with encoded image
        """
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (
            batch_size,
            1,
            int(height) // self.vae_scale_factor_spatial,
            int(width) // self.vae_scale_factor_spatial,
            num_channels_latents,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        # Generate random noise for all frames
        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        # Encode the input image to use as first frame
        # Preprocess image
        image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(device, dtype=dtype)
        # Encode image to latents using VAE
        with torch.no_grad():
            image_latents = self.vae.encode(image_tensor).latent_dist.sample(generator=generator)
            image_latents = image_latents.unsqueeze(2)  # Add temporal dimension

            # Normalize latents if needed
            if hasattr(self.vae.config, "scaling_factor"):
                image_latents = image_latents * self.vae.config.scaling_factor

            # Reshape to match latent dimensions [batch, 1, height, width, channels]
            image_latents = image_latents.permute(0, 2, 3, 4, 1)  # [batch, 1, H, W, C]
            latents = torch.cat([latents, image_latents, torch.ones_like(latents[..., :1])], -1)

        return latents

    @property
    def guidance_scale(self):
        """Get the current guidance scale value."""
        return self._guidance_scale

    @property
    def num_timesteps(self):
        """Get the number of denoising timesteps."""
        return self._num_timesteps

    @property
    def interrupt(self):
        """Check if generation has been interrupted."""
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds_qwen: Optional[torch.Tensor] = None,
        prompt_embeds_clip: Optional[torch.Tensor] = None,
        negative_prompt_embeds_qwen: Optional[torch.Tensor] = None,
        negative_prompt_embeds_clip: Optional[torch.Tensor] = None,
        prompt_cu_seqlens: Optional[torch.Tensor] = None,
        negative_prompt_cu_seqlens: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 1024,
    ):
        r"""
        The call function to the pipeline for image-to-image generation.

        Args:
            image (`PipelineImageInput`):
                The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, pass `prompt_embeds` instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to avoid during image generation. If not defined, pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (`guidance_scale` < `1`).
            height (`int`):
                The height in pixels of the generated image.
            width (`int`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, defaults to `50`):
                The number of denoising steps.
            guidance_scale (`float`, defaults to `5.0`):
                Guidance scale as defined in classifier-free guidance.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A torch generator to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents.
            prompt_embeds_qwen (`torch.Tensor`, *optional*):
                Pre-generated Qwen text embeddings.
            prompt_embeds_clip (`torch.Tensor`, *optional*):
                Pre-generated CLIP text embeddings.
            negative_prompt_embeds_qwen (`torch.Tensor`, *optional*):
                Pre-generated Qwen negative text embeddings.
            negative_prompt_embeds_clip (`torch.Tensor`, *optional*):
                Pre-generated CLIP negative text embeddings.
            prompt_cu_seqlens (`torch.Tensor`, *optional*):
                Pre-generated cumulative sequence lengths for Qwen positive prompt.
            negative_prompt_cu_seqlens (`torch.Tensor`, *optional*):
                Pre-generated cumulative sequence lengths for Qwen negative prompt.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`KandinskyImagePipelineOutput`].
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function that is called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function.
            max_sequence_length (`int`, defaults to `1024`):
                The maximum sequence length for text and image qwen encoding. Must be less than 1024

        Examples:

        Returns:
            [`~KandinskyImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`KandinskyImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
        """
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
        # 1. Check inputs. Raise error if not correct
        if height is None and width is None:
            width, height = image[0].size if isinstance(image, list) else image.size
        self.check_inputs(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=image,
            height=height,
            width=width,
            prompt_embeds_qwen=prompt_embeds_qwen,
            prompt_embeds_clip=prompt_embeds_clip,
            negative_prompt_embeds_qwen=negative_prompt_embeds_qwen,
            negative_prompt_embeds_clip=negative_prompt_embeds_clip,
            prompt_cu_seqlens=prompt_cu_seqlens,
            negative_prompt_cu_seqlens=negative_prompt_cu_seqlens,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )
        if (width, height) not in self.resolutions:
            width, height = self.resolutions[
                np.argmin([abs((i[0] / i[1]) - (width / height)) for i in self.resolutions])
            ]

        self._guidance_scale = guidance_scale
        self._interrupt = False

        device = self._execution_device
        dtype = self.transformer.dtype

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
            prompt = [prompt]
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds_qwen.shape[0]

        # 3. Encode input prompt
        if prompt_embeds_qwen is None:
            prompt_embeds_qwen, prompt_embeds_clip, prompt_cu_seqlens = self.encode_prompt(
                prompt=prompt,
                image=image,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )

        if self.guidance_scale > 1.0:
            if negative_prompt is None:
                negative_prompt = ""

            if isinstance(negative_prompt, str):
                negative_prompt = [negative_prompt] * len(prompt) if prompt is not None else [negative_prompt]
            elif len(negative_prompt) != len(prompt):
                raise ValueError(
                    f"`negative_prompt` must have same length as `prompt`. Got {len(negative_prompt)} vs {len(prompt)}."
                )

            if negative_prompt_embeds_qwen is None:
                negative_prompt_embeds_qwen, negative_prompt_embeds_clip, negative_prompt_cu_seqlens = (
                    self.encode_prompt(
                        prompt=negative_prompt,
                        image=image,
                        num_images_per_prompt=num_images_per_prompt,
                        max_sequence_length=max_sequence_length,
                        device=device,
                        dtype=dtype,
                    )
                )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables with image conditioning
        num_channels_latents = self.transformer.config.in_visual_dim
        latents = self.prepare_latents(
            image=image,
            batch_size=batch_size * num_images_per_prompt,
            num_channels_latents=num_channels_latents,
            height=height,
            width=width,
            dtype=dtype,
            device=device,
            generator=generator,
            latents=latents,
        )

        # 6. Prepare rope positions for positional encoding
        visual_rope_pos = [
            torch.arange(1, device=device),
            torch.arange(height // self.vae_scale_factor_spatial // 2, device=device),
            torch.arange(width // self.vae_scale_factor_spatial // 2, device=device),
        ]

        text_rope_pos = torch.arange(prompt_cu_seqlens.diff().max().item(), device=device)

        negative_text_rope_pos = (
            torch.arange(negative_prompt_cu_seqlens.diff().max().item(), device=device)
            if negative_prompt_cu_seqlens is not None
            else None
        )

        # 7. Calculate dynamic scale factor based on resolution
        scale_factor = [1.0, 1.0, 1.0]

        # 8. Sparse Params for efficient attention
        sparse_params = None

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                timestep = t.unsqueeze(0).repeat(batch_size * num_images_per_prompt)

                # Predict noise residual
                pred_velocity = self.transformer(
                    hidden_states=latents.to(dtype),
                    encoder_hidden_states=prompt_embeds_qwen.to(dtype),
                    pooled_projections=prompt_embeds_clip.to(dtype),
                    timestep=timestep.to(dtype),
                    visual_rope_pos=visual_rope_pos,
                    text_rope_pos=text_rope_pos,
                    scale_factor=scale_factor,
                    sparse_params=sparse_params,
                    return_dict=True,
                ).sample

                if self.guidance_scale > 1.0 and negative_prompt_embeds_qwen is not None:
                    uncond_pred_velocity = self.transformer(
                        hidden_states=latents.to(dtype),
                        encoder_hidden_states=negative_prompt_embeds_qwen.to(dtype),
                        pooled_projections=negative_prompt_embeds_clip.to(dtype),
                        timestep=timestep.to(dtype),
                        visual_rope_pos=visual_rope_pos,
                        text_rope_pos=negative_text_rope_pos,
                        scale_factor=scale_factor,
                        sparse_params=sparse_params,
                        return_dict=True,
                    ).sample

                    pred_velocity = uncond_pred_velocity + guidance_scale * (pred_velocity - uncond_pred_velocity)

                latents[:, :, :, :, :num_channels_latents] = self.scheduler.step(
                    pred_velocity[:, :], t, latents[:, :, :, :, :num_channels_latents], return_dict=False
                )[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds_qwen = callback_outputs.pop("prompt_embeds_qwen", prompt_embeds_qwen)
                    prompt_embeds_clip = callback_outputs.pop("prompt_embeds_clip", prompt_embeds_clip)
                    negative_prompt_embeds_qwen = callback_outputs.pop(
                        "negative_prompt_embeds_qwen", negative_prompt_embeds_qwen
                    )
                    negative_prompt_embeds_clip = callback_outputs.pop(
                        "negative_prompt_embeds_clip", negative_prompt_embeds_clip
                    )

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        # 9. Post-processing - extract main latents
        latents = latents[:, :, :, :, :num_channels_latents]

        # 10. Decode latents to image
        if output_type != "latent":
            latents = latents.to(self.vae.dtype)
            # Reshape and normalize latents
            latents = latents.reshape(
                batch_size,
                num_images_per_prompt,
                1,
                height // self.vae_scale_factor_spatial,
                width // self.vae_scale_factor_spatial,
                num_channels_latents,
            )
            latents = latents.permute(0, 1, 5, 2, 3, 4)  # [batch, num_images, channels, 1, height, width]
            latents = latents.reshape(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height // self.vae_scale_factor_spatial,
                width // self.vae_scale_factor_spatial,
            )

            # Normalize and decode through VAE
            latents = latents / self.vae.config.scaling_factor
            image = self.vae.decode(latents).sample
            image = self.image_processor.postprocess(image, output_type=output_type)
        else:
            image = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return KandinskyImagePipelineOutput(image=image)