# Copyright 2025 The Kandinsky Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import html from typing import Callable, Dict, List, Optional, Union import numpy as np import regex as re import torch from torch.nn import functional as F from transformers import CLIPTextModel, CLIPTokenizer, Qwen2_5_VLForConditionalGeneration, Qwen2VLProcessor from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import KandinskyLoraLoaderMixin from ...models import AutoencoderKL from ...models.transformers import Kandinsky5Transformer3DModel from ...schedulers import FlowMatchEulerDiscreteScheduler # Add imports for offloading and tiling from ...utils import ( is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline from .pipeline_output import KandinskyImagePipelineOutput if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_ftfy_available(): import ftfy logger = logging.get_logger(__name__) EXAMPLE_DOC_STRING = """ Examples: ```python >>> import torch >>> from diffusers import Kandinsky5I2IPipeline >>> # Available models: >>> # kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers >>> # kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers >>> model_id = "kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers" >>> pipe = Kandinsky5I2IPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) >>> pipe = pipe.to("cuda") >>> prompt = "A cat and a dog baking a cake together in a kitchen." >>> output = pipe( ... prompt=prompt, ... negative_prompt="", ... height=1024, ... width=1024, ... num_inference_steps=50, ... guidance_scale=3.5, ... ).frames[0] ``` """ def basic_clean(text): """ Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py Clean text using ftfy if available and unescape HTML entities. """ if is_ftfy_available(): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): """ Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py Normalize whitespace in text by replacing multiple spaces with single space. """ text = re.sub(r"\s+", " ", text) text = text.strip() return text def prompt_clean(text): """ Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan.py Apply both basic cleaning and whitespace normalization to prompts. """ text = whitespace_clean(basic_clean(text)) return text class Kandinsky5I2IPipeline(DiffusionPipeline, KandinskyLoraLoaderMixin): r""" Pipeline for image-to-image generation using Kandinsky 5.0. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: transformer ([`Kandinsky5Transformer3DModel`]): Conditional Transformer to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder Model [black-forest-labs/FLUX.1-dev (vae)](https://huggingface.co/black-forest-labs/FLUX.1-dev) to encode and decode videos to and from latent representations. text_encoder ([`Qwen2_5_VLForConditionalGeneration`]): Frozen text-encoder [Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). tokenizer ([`AutoProcessor`]): Tokenizer for Qwen2.5-VL. text_encoder_2 ([`CLIPTextModel`]): Frozen [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer_2 ([`CLIPTokenizer`]): Tokenizer for CLIP. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds_qwen", "prompt_embeds_clip", "negative_prompt_embeds_qwen", "negative_prompt_embeds_clip", ] def __init__( self, transformer: Kandinsky5Transformer3DModel, vae: AutoencoderKL, text_encoder: Qwen2_5_VLForConditionalGeneration, tokenizer: Qwen2VLProcessor, text_encoder_2: CLIPTextModel, tokenizer_2: CLIPTokenizer, scheduler: FlowMatchEulerDiscreteScheduler, ): super().__init__() self.register_modules( transformer=transformer, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, scheduler=scheduler, ) self.prompt_template = "<|im_start|>system\nYou are a promt engineer. Based on the provided source image (first image) and target image (second image), create an interesting text prompt that can be used together with the source image to create the target image:<|im_end|><|im_start|>user{}<|vision_start|><|image_pad|><|vision_end|><|im_end|>" self.prompt_template_encode_start_idx = 55 self.vae_scale_factor_spatial = 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor_spatial) self.resolutions = [(1024, 1024), (640, 1408), (1408, 640), (768, 1280), (1280, 768), (896, 1152), (1152, 896)] def _encode_prompt_qwen( self, prompt: List[str], image: Optional[PipelineImageInput] = None, device: Optional[torch.device] = None, max_sequence_length: int = 1024, dtype: Optional[torch.dtype] = None, ): """ Encode prompt using Qwen2.5-VL text encoder. This method processes the input prompt through the Qwen2.5-VL model to generate text embeddings suitable for image generation. Args: prompt List[str]: Input list of prompts image (PipelineImageInput): Input list of images to condition the generation on device (torch.device): Device to run encoding on max_sequence_length (int): Maximum sequence length for tokenization dtype (torch.dtype): Data type for embeddings Returns: Tuple[torch.Tensor, torch.Tensor]: Text embeddings and cumulative sequence lengths """ device = device or self._execution_device dtype = dtype or self.text_encoder.dtype if not isinstance(image, list): image = [image] image = [i.resize((i.size[0] // 2, i.size[1] // 2)) for i in image] full_texts = [self.prompt_template.format(p) for p in prompt] max_allowed_len = self.prompt_template_encode_start_idx + max_sequence_length untruncated_ids = self.tokenizer( text=full_texts, images=image, videos=None, return_tensors="pt", padding="longest", )["input_ids"] if untruncated_ids.shape[-1] > max_allowed_len: for i, text in enumerate(full_texts): tokens = untruncated_ids[i] num_image_tokens = (tokens == self.tokenizer.image_token_id).sum() tokens = tokens[tokens != self.tokenizer.image_token_id][self.prompt_template_encode_start_idx : -3] removed_text = self.tokenizer.decode(tokens[max_sequence_length - num_image_tokens - 3 :]) if len(removed_text) > 0: full_texts[i] = text[: -len(removed_text)] logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) inputs = self.tokenizer( text=full_texts, images=image, videos=None, max_length=max_allowed_len, truncation=True, return_tensors="pt", padding=True, ).to(device) embeds = self.text_encoder( **inputs, return_dict=True, output_hidden_states=True, )["hidden_states"][-1][:, self.prompt_template_encode_start_idx :] attention_mask = inputs["attention_mask"][:, self.prompt_template_encode_start_idx :] cu_seqlens = torch.cumsum(attention_mask.sum(1), dim=0) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0).to(dtype=torch.int32) return embeds.to(dtype), cu_seqlens def _encode_prompt_clip( self, prompt: Union[str, List[str]], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): """ Encode prompt using CLIP text encoder. This method processes the input prompt through the CLIP model to generate pooled embeddings that capture semantic information. Args: prompt (Union[str, List[str]]): Input prompt or list of prompts device (torch.device): Device to run encoding on dtype (torch.dtype): Data type for embeddings Returns: torch.Tensor: Pooled text embeddings from CLIP """ device = device or self._execution_device dtype = dtype or self.text_encoder_2.dtype inputs = self.tokenizer_2( prompt, max_length=77, truncation=True, add_special_tokens=True, padding="max_length", return_tensors="pt", ).to(device) pooled_embed = self.text_encoder_2(**inputs)["pooler_output"] return pooled_embed.to(dtype) def encode_prompt( self, prompt: Union[str, List[str]], image: torch.Tensor, num_images_per_prompt: int = 1, max_sequence_length: int = 1024, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes a single prompt (positive or negative) into text encoder hidden states. This method combines embeddings from both Qwen2.5-VL and CLIP text encoders to create comprehensive text representations for image generation. Args: prompt (`str` or `List[str]`): Prompt to be encoded. num_images_per_prompt (`int`, *optional*, defaults to 1): Number of images to generate per prompt. max_sequence_length (`int`, *optional*, defaults to 1024): Maximum sequence length for text encoding. Must be less than 1024 device (`torch.device`, *optional*): Torch device. dtype (`torch.dtype`, *optional*): Torch dtype. Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - Qwen text embeddings of shape (batch_size * num_images_per_prompt, sequence_length, embedding_dim) - CLIP pooled embeddings of shape (batch_size * num_images_per_prompt, clip_embedding_dim) - Cumulative sequence lengths (`cu_seqlens`) for Qwen embeddings of shape (batch_size * num_images_per_prompt + 1,) """ device = device or self._execution_device dtype = dtype or self.text_encoder.dtype if not isinstance(prompt, list): prompt = [prompt] batch_size = len(prompt) prompt = [prompt_clean(p) for p in prompt] # Encode with Qwen2.5-VL prompt_embeds_qwen, prompt_cu_seqlens = self._encode_prompt_qwen( prompt=prompt, image=image, device=device, max_sequence_length=max_sequence_length, dtype=dtype, ) # prompt_embeds_qwen shape: [batch_size, seq_len, embed_dim] # Encode with CLIP prompt_embeds_clip = self._encode_prompt_clip( prompt=prompt, device=device, dtype=dtype, ) # prompt_embeds_clip shape: [batch_size, clip_embed_dim] # Repeat embeddings for num_images_per_prompt # Qwen embeddings: repeat sequence for each image, then reshape prompt_embeds_qwen = prompt_embeds_qwen.repeat( 1, num_images_per_prompt, 1 ) # [batch_size, seq_len * num_images_per_prompt, embed_dim] # Reshape to [batch_size * num_images_per_prompt, seq_len, embed_dim] prompt_embeds_qwen = prompt_embeds_qwen.view( batch_size * num_images_per_prompt, -1, prompt_embeds_qwen.shape[-1] ) # CLIP embeddings: repeat for each image prompt_embeds_clip = prompt_embeds_clip.repeat( 1, num_images_per_prompt, 1 ) # [batch_size, num_images_per_prompt, clip_embed_dim] # Reshape to [batch_size * num_images_per_prompt, clip_embed_dim] prompt_embeds_clip = prompt_embeds_clip.view(batch_size * num_images_per_prompt, -1) # Repeat cumulative sequence lengths for num_images_per_prompt # Original differences (lengths) for each prompt in the batch original_lengths = prompt_cu_seqlens.diff() # [len1, len2, ...] # Repeat the lengths for num_images_per_prompt repeated_lengths = original_lengths.repeat_interleave( num_images_per_prompt ) # [len1, len1, ..., len2, len2, ...] # Reconstruct the cumulative lengths repeated_cu_seqlens = torch.cat( [torch.tensor([0], device=device, dtype=torch.int32), repeated_lengths.cumsum(0)] ) return prompt_embeds_qwen, prompt_embeds_clip, repeated_cu_seqlens def check_inputs( self, prompt, negative_prompt, image, height, width, prompt_embeds_qwen=None, prompt_embeds_clip=None, negative_prompt_embeds_qwen=None, negative_prompt_embeds_clip=None, prompt_cu_seqlens=None, negative_prompt_cu_seqlens=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): """ Validate input parameters for the pipeline. Args: prompt: Input prompt negative_prompt: Negative prompt for guidance image: Input image for conditioning height: Image height width: Image width prompt_embeds_qwen: Pre-computed Qwen prompt embeddings prompt_embeds_clip: Pre-computed CLIP prompt embeddings negative_prompt_embeds_qwen: Pre-computed Qwen negative prompt embeddings negative_prompt_embeds_clip: Pre-computed CLIP negative prompt embeddings prompt_cu_seqlens: Pre-computed cumulative sequence lengths for Qwen positive prompt negative_prompt_cu_seqlens: Pre-computed cumulative sequence lengths for Qwen negative prompt callback_on_step_end_tensor_inputs: Callback tensor inputs Raises: ValueError: If inputs are invalid """ if max_sequence_length is not None and max_sequence_length > 1024: raise ValueError("max_sequence_length must be less than 1024") if image is None: raise ValueError("`image` must be provided for image-to-image generation") if (width, height) not in self.resolutions: resolutions_str = ",".join([f"({w},{h})" for w, h in self.resolutions]) logger.warning( f"`height` and `width` have to be one of {resolutions_str}, but are {height} and {width}. Dimensions will be resized accordingly" ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) # Check for consistency within positive prompt embeddings and sequence lengths if prompt_embeds_qwen is not None or prompt_embeds_clip is not None or prompt_cu_seqlens is not None: if prompt_embeds_qwen is None or prompt_embeds_clip is None or prompt_cu_seqlens is None: raise ValueError( "If any of `prompt_embeds_qwen`, `prompt_embeds_clip`, or `prompt_cu_seqlens` is provided, " "all three must be provided." ) # Check for consistency within negative prompt embeddings and sequence lengths if ( negative_prompt_embeds_qwen is not None or negative_prompt_embeds_clip is not None or negative_prompt_cu_seqlens is not None ): if ( negative_prompt_embeds_qwen is None or negative_prompt_embeds_clip is None or negative_prompt_cu_seqlens is None ): raise ValueError( "If any of `negative_prompt_embeds_qwen`, `negative_prompt_embeds_clip`, or `negative_prompt_cu_seqlens` is provided, " "all three must be provided." ) # Check if prompt or embeddings are provided (either prompt or all required embedding components for positive) if prompt is None and prompt_embeds_qwen is None: raise ValueError( "Provide either `prompt` or `prompt_embeds_qwen` (and corresponding `prompt_embeds_clip` and `prompt_cu_seqlens`). Cannot leave all undefined." ) # Validate types for prompt and negative_prompt if provided if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and ( not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list) ): raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") def prepare_latents( self, image: PipelineImageInput, batch_size: int, num_channels_latents: int = 16, height: int = 1024, width: int = 1024, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Prepare initial latent variables for image-to-image generation. This method creates random noise latents with encoded image, Args: image (PipelineImageInput): Input image to condition the generation on batch_size (int): Number of images to generate num_channels_latents (int): Number of channels in latent space height (int): Height of generated image width (int): Width of generated image dtype (torch.dtype): Data type for latents device (torch.device): Device to create latents on generator (torch.Generator): Random number generator latents (torch.Tensor): Pre-existing latents to use Returns: torch.Tensor: Prepared latent tensor with encoded image """ if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, 1, int(height) // self.vae_scale_factor_spatial, int(width) // self.vae_scale_factor_spatial, num_channels_latents, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) # Generate random noise for all frames latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # Encode the input image to use as first frame # Preprocess image image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(device, dtype=dtype) # Encode image to latents using VAE with torch.no_grad(): image_latents = self.vae.encode(image_tensor).latent_dist.sample(generator=generator) image_latents = image_latents.unsqueeze(2) # Add temporal dimension # Normalize latents if needed if hasattr(self.vae.config, "scaling_factor"): image_latents = image_latents * self.vae.config.scaling_factor # Reshape to match latent dimensions [batch, 1, height, width, channels] image_latents = image_latents.permute(0, 2, 3, 4, 1) # [batch, 1, H, W, C] latents = torch.cat([latents, image_latents, torch.ones_like(latents[..., :1])], -1) return latents @property def guidance_scale(self): """Get the current guidance scale value.""" return self._guidance_scale @property def num_timesteps(self): """Get the number of denoising timesteps.""" return self._num_timesteps @property def interrupt(self): """Check if generation has been interrupted.""" return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput, prompt: Union[str, List[str]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds_qwen: Optional[torch.Tensor] = None, prompt_embeds_clip: Optional[torch.Tensor] = None, negative_prompt_embeds_qwen: Optional[torch.Tensor] = None, negative_prompt_embeds_clip: Optional[torch.Tensor] = None, prompt_cu_seqlens: Optional[torch.Tensor] = None, negative_prompt_cu_seqlens: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 1024, ): r""" The call function to the pipeline for image-to-image generation. Args: image (`PipelineImageInput`): The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, pass `prompt_embeds` instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to avoid during image generation. If not defined, pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale` < `1`). height (`int`): The height in pixels of the generated image. width (`int`): The width in pixels of the generated image. num_inference_steps (`int`, defaults to `50`): The number of denoising steps. guidance_scale (`float`, defaults to `5.0`): Guidance scale as defined in classifier-free guidance. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A torch generator to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents. prompt_embeds_qwen (`torch.Tensor`, *optional*): Pre-generated Qwen text embeddings. prompt_embeds_clip (`torch.Tensor`, *optional*): Pre-generated CLIP text embeddings. negative_prompt_embeds_qwen (`torch.Tensor`, *optional*): Pre-generated Qwen negative text embeddings. negative_prompt_embeds_clip (`torch.Tensor`, *optional*): Pre-generated CLIP negative text embeddings. prompt_cu_seqlens (`torch.Tensor`, *optional*): Pre-generated cumulative sequence lengths for Qwen positive prompt. negative_prompt_cu_seqlens (`torch.Tensor`, *optional*): Pre-generated cumulative sequence lengths for Qwen negative prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`KandinskyImagePipelineOutput`]. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function that is called at the end of each denoising step. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. max_sequence_length (`int`, defaults to `1024`): The maximum sequence length for text and image qwen encoding. Must be less than 1024 Examples: Returns: [`~KandinskyImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`KandinskyImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct if height is None and width is None: width, height = image[0].size if isinstance(image, list) else image.size self.check_inputs( prompt=prompt, negative_prompt=negative_prompt, image=image, height=height, width=width, prompt_embeds_qwen=prompt_embeds_qwen, prompt_embeds_clip=prompt_embeds_clip, negative_prompt_embeds_qwen=negative_prompt_embeds_qwen, negative_prompt_embeds_clip=negative_prompt_embeds_clip, prompt_cu_seqlens=prompt_cu_seqlens, negative_prompt_cu_seqlens=negative_prompt_cu_seqlens, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) if (width, height) not in self.resolutions: width, height = self.resolutions[ np.argmin([abs((i[0] / i[1]) - (width / height)) for i in self.resolutions]) ] self._guidance_scale = guidance_scale self._interrupt = False device = self._execution_device dtype = self.transformer.dtype # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 prompt = [prompt] elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds_qwen.shape[0] # 3. Encode input prompt if prompt_embeds_qwen is None: prompt_embeds_qwen, prompt_embeds_clip, prompt_cu_seqlens = self.encode_prompt( prompt=prompt, image=image, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if self.guidance_scale > 1.0: if negative_prompt is None: negative_prompt = "" if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] * len(prompt) if prompt is not None else [negative_prompt] elif len(negative_prompt) != len(prompt): raise ValueError( f"`negative_prompt` must have same length as `prompt`. Got {len(negative_prompt)} vs {len(prompt)}." ) if negative_prompt_embeds_qwen is None: negative_prompt_embeds_qwen, negative_prompt_embeds_clip, negative_prompt_cu_seqlens = ( self.encode_prompt( prompt=negative_prompt, image=image, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables with image conditioning num_channels_latents = self.transformer.config.in_visual_dim latents = self.prepare_latents( image=image, batch_size=batch_size * num_images_per_prompt, num_channels_latents=num_channels_latents, height=height, width=width, dtype=dtype, device=device, generator=generator, latents=latents, ) # 6. Prepare rope positions for positional encoding visual_rope_pos = [ torch.arange(1, device=device), torch.arange(height // self.vae_scale_factor_spatial // 2, device=device), torch.arange(width // self.vae_scale_factor_spatial // 2, device=device), ] text_rope_pos = torch.arange(prompt_cu_seqlens.diff().max().item(), device=device) negative_text_rope_pos = ( torch.arange(negative_prompt_cu_seqlens.diff().max().item(), device=device) if negative_prompt_cu_seqlens is not None else None ) # 7. Calculate dynamic scale factor based on resolution scale_factor = [1.0, 1.0, 1.0] # 8. Sparse Params for efficient attention sparse_params = None # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue timestep = t.unsqueeze(0).repeat(batch_size * num_images_per_prompt) # Predict noise residual pred_velocity = self.transformer( hidden_states=latents.to(dtype), encoder_hidden_states=prompt_embeds_qwen.to(dtype), pooled_projections=prompt_embeds_clip.to(dtype), timestep=timestep.to(dtype), visual_rope_pos=visual_rope_pos, text_rope_pos=text_rope_pos, scale_factor=scale_factor, sparse_params=sparse_params, return_dict=True, ).sample if self.guidance_scale > 1.0 and negative_prompt_embeds_qwen is not None: uncond_pred_velocity = self.transformer( hidden_states=latents.to(dtype), encoder_hidden_states=negative_prompt_embeds_qwen.to(dtype), pooled_projections=negative_prompt_embeds_clip.to(dtype), timestep=timestep.to(dtype), visual_rope_pos=visual_rope_pos, text_rope_pos=negative_text_rope_pos, scale_factor=scale_factor, sparse_params=sparse_params, return_dict=True, ).sample pred_velocity = uncond_pred_velocity + guidance_scale * (pred_velocity - uncond_pred_velocity) latents[:, :, :, :, :num_channels_latents] = self.scheduler.step( pred_velocity[:, :], t, latents[:, :, :, :, :num_channels_latents], return_dict=False )[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds_qwen = callback_outputs.pop("prompt_embeds_qwen", prompt_embeds_qwen) prompt_embeds_clip = callback_outputs.pop("prompt_embeds_clip", prompt_embeds_clip) negative_prompt_embeds_qwen = callback_outputs.pop( "negative_prompt_embeds_qwen", negative_prompt_embeds_qwen ) negative_prompt_embeds_clip = callback_outputs.pop( "negative_prompt_embeds_clip", negative_prompt_embeds_clip ) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() # 9. Post-processing - extract main latents latents = latents[:, :, :, :, :num_channels_latents] # 10. Decode latents to image if output_type != "latent": latents = latents.to(self.vae.dtype) # Reshape and normalize latents latents = latents.reshape( batch_size, num_images_per_prompt, 1, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, num_channels_latents, ) latents = latents.permute(0, 1, 5, 2, 3, 4) # [batch, num_images, channels, 1, height, width] latents = latents.reshape( batch_size * num_images_per_prompt, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) # Normalize and decode through VAE latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents).sample image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return KandinskyImagePipelineOutput(image=image)