textual_inversion.py 38.3 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

Suraj Patil's avatar
Suraj Patil committed
16
import argparse
Suraj Patil's avatar
Suraj Patil committed
17
import logging
Suraj Patil's avatar
Suraj Patil committed
18
19
20
import math
import os
import random
21
import shutil
22
import warnings
Suraj Patil's avatar
Suraj Patil committed
23
24
25
from pathlib import Path

import numpy as np
26
import PIL
27
import safetensors
Suraj Patil's avatar
Suraj Patil committed
28
29
30
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
31
import transformers
Suraj Patil's avatar
Suraj Patil committed
32
33
from accelerate import Accelerator
from accelerate.logging import get_logger
34
from accelerate.utils import ProjectConfiguration, set_seed
35
from huggingface_hub import create_repo, upload_folder
36
37
38
39
40
41
42
43
44
45

# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

import diffusers
46
47
48
49
50
51
52
53
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
Suraj Patil's avatar
Suraj Patil committed
54
from diffusers.optimization import get_scheduler
55
from diffusers.utils import check_min_version, is_wandb_available
56
from diffusers.utils.import_utils import is_xformers_available
Suraj Patil's avatar
Suraj Patil committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58

59
60
61
if is_wandb_available():
    import wandb

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------

Suraj Patil's avatar
Suraj Patil committed
80

81
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
82
check_min_version("0.21.0.dev0")
83

Suraj Patil's avatar
Suraj Patil committed
84
85
86
logger = get_logger(__name__)


87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def save_model_card(repo_id: str, images=None, base_model=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
    """
    model_card = f"""
# Textual inversion text2image fine-tuning - {repo_id}
These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


115
116
117
118
119
120
121
122
123
124
125
126
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=unet,
        vae=vae,
127
        safety_checker=None,
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()
158
    return images
159
160


161
def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path, safe_serialization=True):
162
    logger.info("Saving embeddings")
163
164
165
166
167
    learned_embeds = (
        accelerator.unwrap_model(text_encoder)
        .get_input_embeddings()
        .weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1]
    )
168
    learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
169
170
171
172
173

    if safe_serialization:
        safetensors.torch.save_file(learned_embeds_dict, save_path, metadata={"format": "pt"})
    else:
        torch.save(learned_embeds_dict, save_path)
174
175


Suraj Patil's avatar
Suraj Patil committed
176
177
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
178
179
180
181
182
183
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
184
    parser.add_argument(
185
        "--save_as_full_pipeline",
186
        action="store_true",
187
        help="Save the complete stable diffusion pipeline.",
188
    )
189
190
191
192
193
194
    parser.add_argument(
        "--num_vectors",
        type=int,
        default=1,
        help="How many textual inversion vectors shall be used to learn the concept.",
    )
Suraj Patil's avatar
Suraj Patil committed
195
196
197
198
199
200
201
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
202
203
204
205
206
207
208
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
Suraj Patil's avatar
Suraj Patil committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
247
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
Suraj Patil's avatar
Suraj Patil committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
265
266
267
268
269
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
Suraj Patil's avatar
Suraj Patil committed
270
271
272
273
274
275
276
277
278
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
279
        default=False,
Suraj Patil's avatar
Suraj Patil committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
294
295
296
297
298
299
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
300
301
302
303
304
305
306
307
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
340
341
342
343
344
345
346
347
348
349
350
351
352
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
353
354
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
355
356
        ),
    )
357
358
359
360
361
362
363
364
365
366
367
368
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
369
370
371
372
373
374
375
376
377
378
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
379
380
381
    parser.add_argument(
        "--validation_epochs",
        type=int,
382
        default=None,
383
        help=(
384
            "Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt"
385
386
387
388
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
389
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
390
391
392
393
394
395
396
397
398
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
399
    parser.add_argument(
400
        "--checkpoints_total_limit",
401
402
        type=int,
        default=None,
403
        help=("Max number of checkpoints to store."),
404
    )
405
406
407
408
409
410
411
412
413
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
414
415
416
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
417
418
419
420
421
    parser.add_argument(
        "--no_safe_serialization",
        action="store_true",
        help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.",
    )
Suraj Patil's avatar
Suraj Patil committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
518
519
520
521
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
Suraj Patil's avatar
Suraj Patil committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
Patrick von Platen's avatar
Patrick von Platen committed
553
554
555
556
            (
                h,
                w,
            ) = (
Suraj Patil's avatar
Suraj Patil committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def main():
    args = parse_args()
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
576
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
Suraj Patil's avatar
Suraj Patil committed
577
578
579
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
580
        log_with=args.report_to,
581
        project_config=accelerator_project_config,
Suraj Patil's avatar
Suraj Patil committed
582
583
    )

584
585
586
587
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

Suraj Patil's avatar
Suraj Patil committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

Suraj Patil's avatar
Suraj Patil committed
602
603
604
605
606
607
    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
608
        if args.output_dir is not None:
Suraj Patil's avatar
Suraj Patil committed
609
610
            os.makedirs(args.output_dir, exist_ok=True)

611
612
613
614
615
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

Suraj Patil's avatar
Suraj Patil committed
616
    # Load tokenizer
Suraj Patil's avatar
Suraj Patil committed
617
    if args.tokenizer_name:
618
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
Suraj Patil's avatar
Suraj Patil committed
619
    elif args.pretrained_model_name_or_path:
620
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
621

Suraj Patil's avatar
Suraj Patil committed
622
623
624
625
626
627
628
629
630
631
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

632
    # Add the placeholder token in tokenizer
633
634
635
636
637
638
639
640
641
642
643
644
645
    placeholder_tokens = [args.placeholder_token]

    if args.num_vectors < 1:
        raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}")

    # add dummy tokens for multi-vector
    additional_tokens = []
    for i in range(1, args.num_vectors):
        additional_tokens.append(f"{args.placeholder_token}_{i}")
    placeholder_tokens += additional_tokens

    num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
    if num_added_tokens != args.num_vectors:
646
647
648
        raise ValueError(
            f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
            " `placeholder_token` that is not already in the tokenizer."
Suraj Patil's avatar
Suraj Patil committed
649
650
651
652
653
654
655
656
657
        )

    # Convert the initializer_token, placeholder_token to ids
    token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
    # Check if initializer_token is a single token or a sequence of tokens
    if len(token_ids) > 1:
        raise ValueError("The initializer token must be a single token.")

    initializer_token_id = token_ids[0]
658
    placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
Suraj Patil's avatar
Suraj Patil committed
659
660
661
662
663
664

    # Resize the token embeddings as we are adding new special tokens to the tokenizer
    text_encoder.resize_token_embeddings(len(tokenizer))

    # Initialise the newly added placeholder token with the embeddings of the initializer token
    token_embeds = text_encoder.get_input_embeddings().weight.data
665
666
667
    with torch.no_grad():
        for token_id in placeholder_token_ids:
            token_embeds[token_id] = token_embeds[initializer_token_id].clone()
Suraj Patil's avatar
Suraj Patil committed
668
669

    # Freeze vae and unet
670
671
    vae.requires_grad_(False)
    unet.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
672
    # Freeze all parameters except for the token embeddings in text encoder
673
674
675
    text_encoder.text_model.encoder.requires_grad_(False)
    text_encoder.text_model.final_layer_norm.requires_grad_(False)
    text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
676

Suraj Patil's avatar
Suraj Patil committed
677
678
679
680
681
682
683
684
685
    if args.gradient_checkpointing:
        # Keep unet in train mode if we are using gradient checkpointing to save memory.
        # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
        unet.train()
        text_encoder.gradient_checkpointing_enable()
        unet.enable_gradient_checkpointing()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
686
687
688
689
690
691
692
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
Suraj Patil's avatar
Suraj Patil committed
693
694
695
696
697
698
699
700
701
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

Suraj Patil's avatar
Suraj Patil committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    optimizer = torch.optim.AdamW(
        text_encoder.get_input_embeddings().parameters(),  # only optimize the embeddings
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
716
    # Dataset and DataLoaders creation:
Suraj Patil's avatar
Suraj Patil committed
717
718
719
720
    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
721
        placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
Suraj Patil's avatar
Suraj Patil committed
722
723
724
725
726
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )
727
728
729
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
730
731
732
733
734
735
736
737
738
    if args.validation_epochs is not None:
        warnings.warn(
            f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}."
            " Deprecated validation_epochs in favor of `validation_steps`"
            f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}",
            FutureWarning,
            stacklevel=2,
        )
        args.validation_steps = args.validation_epochs * len(train_dataset)
Suraj Patil's avatar
Suraj Patil committed
739
740
741
742
743
744
745
746
747
748
749

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
750
751
752
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles,
Suraj Patil's avatar
Suraj Patil committed
753
754
    )

Suraj Patil's avatar
Suraj Patil committed
755
    # Prepare everything with our `accelerator`.
Suraj Patil's avatar
Suraj Patil committed
756
757
758
759
    text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        text_encoder, optimizer, train_dataloader, lr_scheduler
    )

760
761
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
762
763
764
765
766
767
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
768
    # Move vae and unet to device and cast to weight_dtype
769
770
    unet.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("textual_inversion", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
794
795
    global_step = 0
    first_epoch = 0
Suraj Patil's avatar
Suraj Patil committed
796
    # Potentially load in the weights and states from a previous save
797
798
799
800
801
802
803
804
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
820

Suraj Patil's avatar
Suraj Patil committed
821
    # Only show the progress bar once on each machine.
822
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
Suraj Patil's avatar
Suraj Patil committed
823
824
    progress_bar.set_description("Steps")

825
    # keep original embeddings as reference
826
    orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone()
827

828
    for epoch in range(first_epoch, args.num_train_epochs):
Suraj Patil's avatar
Suraj Patil committed
829
830
        text_encoder.train()
        for step, batch in enumerate(train_dataloader):
831
832
833
834
835
836
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

Suraj Patil's avatar
Suraj Patil committed
837
838
            with accelerator.accumulate(text_encoder):
                # Convert images to latent space
839
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach()
840
                latents = latents * vae.config.scaling_factor
Suraj Patil's avatar
Suraj Patil committed
841
842

                # Sample noise that we'll add to the latents
843
                noise = torch.randn_like(latents)
Suraj Patil's avatar
Suraj Patil committed
844
845
                bsz = latents.shape[0]
                # Sample a random timestep for each image
846
847
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
Suraj Patil's avatar
Suraj Patil committed
848
849
850
851
852
853

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
854
                encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
855
856

                # Predict the noise residual
857
858
859
860
861
862
863
864
865
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
Suraj Patil's avatar
Suraj Patil committed
866

867
868
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

Suraj Patil's avatar
Suraj Patil committed
869
870
871
872
873
874
                accelerator.backward(loss)

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

875
                # Let's make sure we don't update any embedding weights besides the newly added token
876
877
878
                index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
                index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False

879
                with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
880
881
882
                    accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
                        index_no_updates
                    ] = orig_embeds_params[index_no_updates]
883

Suraj Patil's avatar
Suraj Patil committed
884
885
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
886
                images = []
Suraj Patil's avatar
Suraj Patil committed
887
888
                progress_bar.update(1)
                global_step += 1
889
                if global_step % args.save_steps == 0:
890
                    save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin")
891
892
893
894
895
896
897
898
                    save_progress(
                        text_encoder,
                        placeholder_token_ids,
                        accelerator,
                        args,
                        save_path,
                        safe_serialization=not args.no_safe_serialization,
                    )
Suraj Patil's avatar
Suraj Patil committed
899

900
901
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

922
923
924
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
925
926

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
927
928
929
                        images = log_validation(
                            text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch
                        )
930

Suraj Patil's avatar
Suraj Patil committed
931
932
933
934
935
936
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break
937
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
938
    accelerator.wait_for_everyone()
Suraj Patil's avatar
Suraj Patil committed
939
    if accelerator.is_main_process:
940
        if args.push_to_hub and not args.save_as_full_pipeline:
941
942
943
            logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
            save_full_model = True
        else:
944
            save_full_model = args.save_as_full_pipeline
945
        if save_full_model:
946
947
            pipeline = StableDiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
948
949
950
951
952
953
954
                text_encoder=accelerator.unwrap_model(text_encoder),
                vae=vae,
                unet=unet,
                tokenizer=tokenizer,
            )
            pipeline.save_pretrained(args.output_dir)
        # Save the newly trained embeddings
955
        save_path = os.path.join(args.output_dir, "learned_embeds.bin")
956
957
958
959
960
961
962
963
        save_progress(
            text_encoder,
            placeholder_token_ids,
            accelerator,
            args,
            save_path,
            safe_serialization=not args.no_safe_serialization,
        )
Suraj Patil's avatar
Suraj Patil committed
964
965

        if args.push_to_hub:
966
967
968
969
970
971
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
972
973
974
975
976
977
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
Suraj Patil's avatar
Suraj Patil committed
978
979
980
981
982
983

    accelerator.end_training()


if __name__ == "__main__":
    main()