scheduling_utils.py 4.27 KB
Newer Older
Patrick von Platen's avatar
up  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
Patrick von Platen's avatar
Patrick von Platen committed
15
16
from typing import Union

Patrick von Platen's avatar
Patrick von Platen committed
17
import numpy as np
Patrick von Platen's avatar
up  
Patrick von Platen committed
18
19
import torch

20
21
from ..utils import BaseOutput

Patrick von Platen's avatar
up  
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
SCHEDULER_CONFIG_NAME = "scheduler_config.json"


26
27
28
29
30
31
32
33
34
35
36
37
38
39
@dataclass
class SchedulerOutput(BaseOutput):
    """
    Base class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
class SchedulerMixin:

    config_name = SCHEDULER_CONFIG_NAME
43
    ignore_for_config = ["tensor_format"]
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    def set_format(self, tensor_format="pt"):
        self.tensor_format = tensor_format
        if tensor_format == "pt":
            for key, value in vars(self).items():
                if isinstance(value, np.ndarray):
                    setattr(self, key, torch.from_numpy(value))

        return self

    def clip(self, tensor, min_value=None, max_value=None):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.clip(tensor, min_value, max_value)
        elif tensor_format == "pt":
            return torch.clamp(tensor, min_value, max_value)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
63
64
65
66
67
68
69
70
71
72

    def log(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.log(tensor)
        elif tensor_format == "pt":
            return torch.log(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
73

Patrick von Platen's avatar
Patrick von Platen committed
74
    def match_shape(self, values: Union[np.ndarray, torch.Tensor], broadcast_array: Union[np.ndarray, torch.Tensor]):
75
        """
Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
        Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims.

        Args:
Nathan Lambert's avatar
Nathan Lambert committed
79
            values: an array or tensor of values to extract.
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
            broadcast_array: an array with a larger shape of K dimensions with the batch
                dimension equal to the length of timesteps.
        Returns:
            a tensor of shape [batch_size, 1, ...] where the shape has K dims.
84
85
86
87
88
89
90
91
92
93
94
        """

        tensor_format = getattr(self, "tensor_format", "pt")
        values = values.flatten()

        while len(values.shape) < len(broadcast_array.shape):
            values = values[..., None]
        if tensor_format == "pt":
            values = values.to(broadcast_array.device)

        return values
Nathan Lambert's avatar
Nathan Lambert committed
95
96
97
98
99
100
101
102
103
104

    def norm(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.linalg.norm(tensor)
        elif tensor_format == "pt":
            return torch.norm(tensor.reshape(tensor.shape[0], -1), dim=-1).mean()

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

105
    def randn_like(self, tensor, generator=None):
Nathan Lambert's avatar
Nathan Lambert committed
106
107
108
109
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.random.randn(*np.shape(tensor))
        elif tensor_format == "pt":
110
111
            # return torch.randn_like(tensor)
            return torch.randn(tensor.shape, layout=tensor.layout, generator=generator).to(tensor.device)
Nathan Lambert's avatar
Nathan Lambert committed
112
113
114
115
116
117
118
119
120
121
122

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def zeros_like(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.zeros_like(tensor)
        elif tensor_format == "pt":
            return torch.zeros_like(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")