scheduling_utils.py 1.74 KB
Newer Older
Patrick von Platen's avatar
up  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
14
import numpy as np
Patrick von Platen's avatar
up  
Patrick von Platen committed
15
16
17
import torch


Patrick von Platen's avatar
Patrick von Platen committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
SCHEDULER_CONFIG_NAME = "scheduler_config.json"


class SchedulerMixin:

    config_name = SCHEDULER_CONFIG_NAME

    def set_format(self, tensor_format="pt"):
        self.tensor_format = tensor_format
        if tensor_format == "pt":
            for key, value in vars(self).items():
                if isinstance(value, np.ndarray):
                    setattr(self, key, torch.from_numpy(value))

        return self

    def clip(self, tensor, min_value=None, max_value=None):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.clip(tensor, min_value, max_value)
        elif tensor_format == "pt":
            return torch.clamp(tensor, min_value, max_value)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
43
44
45
46
47
48
49
50
51
52

    def log(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.log(tensor)
        elif tensor_format == "pt":
            return torch.log(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")