unet_2d_condition_flax.py 15.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Optional, Tuple, Union
15

16
import flax
17
18
19
20
21
22
23
24
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
25
from .modeling_flax_utils import FlaxModelMixin
26
from .unet_2d_blocks_flax import (
27
28
29
30
31
32
33
34
    FlaxCrossAttnDownBlock2D,
    FlaxCrossAttnUpBlock2D,
    FlaxDownBlock2D,
    FlaxUNetMidBlock2DCrossAttn,
    FlaxUpBlock2D,
)


35
@flax.struct.dataclass
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class FlaxUNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: jnp.ndarray


@flax_register_to_config
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
    FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
    timestep and returns sample shaped output.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

Younes Belkada's avatar
Younes Belkada committed
55
56
57
58
59
60
61
62
63
64
    Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.

    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

65
    Parameters:
Younes Belkada's avatar
Younes Belkada committed
66
67
68
69
70
71
        sample_size (`int`, *optional*):
            The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4):
            The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4):
            The number of channels in the output.
72
73
74
75
76
77
78
79
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D",
            "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D"
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D",
            "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D"
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
Younes Belkada's avatar
Younes Belkada committed
80
81
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
82
        attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
Younes Belkada's avatar
Younes Belkada committed
83
            The dimension of the attention heads.
84
85
        num_attention_heads (`int` or `Tuple[int]`, *optional*):
            The number of attention heads.
Younes Belkada's avatar
Younes Belkada committed
86
87
88
89
        cross_attention_dim (`int`, *optional*, defaults to 768):
            The dimension of the cross attention features.
        dropout (`float`, *optional*, defaults to 0):
            Dropout probability for down, up and bottleneck blocks.
Akash Gokul's avatar
Akash Gokul committed
90
91
92
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
93
94
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Akash Gokul's avatar
Akash Gokul committed
95

96
97
98
99
100
101
102
103
104
105
106
107
    """

    sample_size: int = 32
    in_channels: int = 4
    out_channels: int = 4
    down_block_types: Tuple[str] = (
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "DownBlock2D",
    )
    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
108
    only_cross_attention: Union[bool, Tuple[bool]] = False
109
110
    block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
    layers_per_block: int = 2
111
    attention_head_dim: Union[int, Tuple[int]] = 8
112
    num_attention_heads: Optional[Union[int, Tuple[int]]] = None
113
114
    cross_attention_dim: int = 1280
    dropout: float = 0.0
115
    use_linear_projection: bool = False
116
    dtype: jnp.dtype = jnp.float32
Akash Gokul's avatar
Akash Gokul committed
117
    flip_sin_to_cos: bool = True
118
    freq_shift: int = 0
119
    use_memory_efficient_attention: bool = False
120

121
    def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
122
        # init input tensors
123
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
124
125
126
127
128
129
130
131
132
133
134
135
136
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)
        timesteps = jnp.ones((1,), dtype=jnp.int32)
        encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"]

    def setup(self):
        block_out_channels = self.block_out_channels
        time_embed_dim = block_out_channels[0] * 4

137
138
139
140
141
142
143
144
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = self.num_attention_heads or self.attention_head_dim

145
146
147
148
149
150
151
152
153
154
        # input
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # time
Akash Gokul's avatar
Akash Gokul committed
155
156
157
        self.time_proj = FlaxTimesteps(
            block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
        )
158
159
        self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)

160
161
162
163
        only_cross_attention = self.only_cross_attention
        if isinstance(only_cross_attention, bool):
            only_cross_attention = (only_cross_attention,) * len(self.down_block_types)

164
165
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
        # down
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "CrossAttnDownBlock2D":
                down_block = FlaxCrossAttnDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
181
                    num_attention_heads=num_attention_heads[i],
182
                    add_downsample=not is_final_block,
183
184
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
185
                    use_memory_efficient_attention=self.use_memory_efficient_attention,
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                    dtype=self.dtype,
                )
            else:
                down_block = FlaxDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )

            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # mid
        self.mid_block = FlaxUNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            dropout=self.dropout,
205
            num_attention_heads=num_attention_heads[-1],
206
            use_linear_projection=self.use_linear_projection,
207
            use_memory_efficient_attention=self.use_memory_efficient_attention,
208
209
210
211
212
213
            dtype=self.dtype,
        )

        # up
        up_blocks = []
        reversed_block_out_channels = list(reversed(block_out_channels))
214
        reversed_num_attention_heads = list(reversed(num_attention_heads))
215
        only_cross_attention = list(reversed(only_cross_attention))
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            if up_block_type == "CrossAttnUpBlock2D":
                up_block = FlaxCrossAttnUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
230
                    num_attention_heads=reversed_num_attention_heads[i],
231
232
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
233
234
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
235
                    use_memory_efficient_attention=self.use_memory_efficient_attention,
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                    dtype=self.dtype,
                )
            else:
                up_block = FlaxUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
                    dtype=self.dtype,
                )

            up_blocks.append(up_block)
            prev_output_channel = output_channel
        self.up_blocks = up_blocks

        # out
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(
        self,
        sample,
        timesteps,
        encoder_hidden_states,
YiYi Xu's avatar
YiYi Xu committed
268
269
        down_block_additional_residuals=None,
        mid_block_additional_residual=None,
270
271
272
        return_dict: bool = True,
        train: bool = False,
    ) -> Union[FlaxUNet2DConditionOutput, Tuple]:
273
        r"""
274
        Args:
Kamal Raj's avatar
Kamal Raj committed
275
            sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
276
            timestep (`jnp.ndarray` or `float` or `int`): timesteps
Kamal Raj's avatar
Kamal Raj committed
277
            encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
278
279
280
281
282
283
284
285
286
287
288
289
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
                plain tuple.
            train (`bool`, *optional*, defaults to `False`):
                Use deterministic functions and disable dropout when not training.

        Returns:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
        """
        # 1. time
290
291
292
293
294
295
        if not isinstance(timesteps, jnp.ndarray):
            timesteps = jnp.array([timesteps], dtype=jnp.int32)
        elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
            timesteps = timesteps.astype(dtype=jnp.float32)
            timesteps = jnp.expand_dims(timesteps, 0)

296
297
298
299
        t_emb = self.time_proj(timesteps)
        t_emb = self.time_embedding(t_emb)

        # 2. pre-process
300
        sample = jnp.transpose(sample, (0, 2, 3, 1))
301
302
303
304
305
306
307
308
309
310
311
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for down_block in self.down_blocks:
            if isinstance(down_block, FlaxCrossAttnDownBlock2D):
                sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
            else:
                sample, res_samples = down_block(sample, t_emb, deterministic=not train)
            down_block_res_samples += res_samples

YiYi Xu's avatar
YiYi Xu committed
312
313
314
315
316
317
318
319
320
321
322
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample += down_block_additional_residual
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

323
324
325
        # 4. mid
        sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)

YiYi Xu's avatar
YiYi Xu committed
326
327
328
        if mid_block_additional_residual is not None:
            sample += mid_block_additional_residual

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        # 5. up
        for up_block in self.up_blocks:
            res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
            down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)]
            if isinstance(up_block, FlaxCrossAttnUpBlock2D):
                sample = up_block(
                    sample,
                    temb=t_emb,
                    encoder_hidden_states=encoder_hidden_states,
                    res_hidden_states_tuple=res_samples,
                    deterministic=not train,
                )
            else:
                sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train)

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = nn.silu(sample)
        sample = self.conv_out(sample)
348
        sample = jnp.transpose(sample, (0, 3, 1, 2))
349
350
351
352
353

        if not return_dict:
            return (sample,)

        return FlaxUNet2DConditionOutput(sample=sample)