unet_2d_condition_flax.py 13.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
from typing import Tuple, Union

16
import flax
17
18
19
20
21
22
23
24
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
25
from .modeling_flax_utils import FlaxModelMixin
26
from .unet_2d_blocks_flax import (
27
28
29
30
31
32
33
34
    FlaxCrossAttnDownBlock2D,
    FlaxCrossAttnUpBlock2D,
    FlaxDownBlock2D,
    FlaxUNetMidBlock2DCrossAttn,
    FlaxUpBlock2D,
)


35
@flax.struct.dataclass
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class FlaxUNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: jnp.ndarray


@flax_register_to_config
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
    FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
    timestep and returns sample shaped output.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

Younes Belkada's avatar
Younes Belkada committed
55
56
57
58
59
60
61
62
63
64
    Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.

    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

65
    Parameters:
Younes Belkada's avatar
Younes Belkada committed
66
67
68
69
70
71
        sample_size (`int`, *optional*):
            The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4):
            The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4):
            The number of channels in the output.
72
73
74
75
76
77
78
79
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D",
            "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D"
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D",
            "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D"
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
Younes Belkada's avatar
Younes Belkada committed
80
81
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
82
        attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
Younes Belkada's avatar
Younes Belkada committed
83
84
85
86
87
            The dimension of the attention heads.
        cross_attention_dim (`int`, *optional*, defaults to 768):
            The dimension of the cross attention features.
        dropout (`float`, *optional*, defaults to 0):
            Dropout probability for down, up and bottleneck blocks.
Akash Gokul's avatar
Akash Gokul committed
88
89
90
91
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.

92
93
94
95
96
97
98
99
100
101
102
103
    """

    sample_size: int = 32
    in_channels: int = 4
    out_channels: int = 4
    down_block_types: Tuple[str] = (
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "DownBlock2D",
    )
    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
104
    only_cross_attention: Union[bool, Tuple[bool]] = False
105
106
    block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
    layers_per_block: int = 2
107
    attention_head_dim: Union[int, Tuple[int]] = 8
108
109
    cross_attention_dim: int = 1280
    dropout: float = 0.0
110
    use_linear_projection: bool = False
111
    dtype: jnp.dtype = jnp.float32
Akash Gokul's avatar
Akash Gokul committed
112
    flip_sin_to_cos: bool = True
113
    freq_shift: int = 0
114

115
    def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
116
        # init input tensors
117
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)
        timesteps = jnp.ones((1,), dtype=jnp.int32)
        encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"]

    def setup(self):
        block_out_channels = self.block_out_channels
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # time
Akash Gokul's avatar
Akash Gokul committed
141
142
143
        self.time_proj = FlaxTimesteps(
            block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
        )
144
145
        self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)

146
147
148
149
150
151
152
153
        only_cross_attention = self.only_cross_attention
        if isinstance(only_cross_attention, bool):
            only_cross_attention = (only_cross_attention,) * len(self.down_block_types)

        attention_head_dim = self.attention_head_dim
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(self.down_block_types)

154
155
156
157
158
159
160
161
162
163
164
165
166
167
        # down
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "CrossAttnDownBlock2D":
                down_block = FlaxCrossAttnDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
168
                    attn_num_head_channels=attention_head_dim[i],
169
                    add_downsample=not is_final_block,
170
171
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                    dtype=self.dtype,
                )
            else:
                down_block = FlaxDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )

            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # mid
        self.mid_block = FlaxUNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            dropout=self.dropout,
191
192
            attn_num_head_channels=attention_head_dim[-1],
            use_linear_projection=self.use_linear_projection,
193
194
195
196
197
198
            dtype=self.dtype,
        )

        # up
        up_blocks = []
        reversed_block_out_channels = list(reversed(block_out_channels))
199
200
        reversed_attention_head_dim = list(reversed(attention_head_dim))
        only_cross_attention = list(reversed(only_cross_attention))
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            if up_block_type == "CrossAttnUpBlock2D":
                up_block = FlaxCrossAttnUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
215
                    attn_num_head_channels=reversed_attention_head_dim[i],
216
217
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
218
219
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
                    dtype=self.dtype,
                )
            else:
                up_block = FlaxUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
                    dtype=self.dtype,
                )

            up_blocks.append(up_block)
            prev_output_channel = output_channel
        self.up_blocks = up_blocks

        # out
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(
        self,
        sample,
        timesteps,
        encoder_hidden_states,
        return_dict: bool = True,
        train: bool = False,
    ) -> Union[FlaxUNet2DConditionOutput, Tuple]:
255
        r"""
256
        Args:
Kamal Raj's avatar
Kamal Raj committed
257
            sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
258
            timestep (`jnp.ndarray` or `float` or `int`): timesteps
Kamal Raj's avatar
Kamal Raj committed
259
            encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
260
261
262
263
264
265
266
267
268
269
270
271
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
                plain tuple.
            train (`bool`, *optional*, defaults to `False`):
                Use deterministic functions and disable dropout when not training.

        Returns:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
        """
        # 1. time
272
273
274
275
276
277
        if not isinstance(timesteps, jnp.ndarray):
            timesteps = jnp.array([timesteps], dtype=jnp.int32)
        elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
            timesteps = timesteps.astype(dtype=jnp.float32)
            timesteps = jnp.expand_dims(timesteps, 0)

278
279
280
281
        t_emb = self.time_proj(timesteps)
        t_emb = self.time_embedding(t_emb)

        # 2. pre-process
282
        sample = jnp.transpose(sample, (0, 2, 3, 1))
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for down_block in self.down_blocks:
            if isinstance(down_block, FlaxCrossAttnDownBlock2D):
                sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
            else:
                sample, res_samples = down_block(sample, t_emb, deterministic=not train)
            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)

        # 5. up
        for up_block in self.up_blocks:
            res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
            down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)]
            if isinstance(up_block, FlaxCrossAttnUpBlock2D):
                sample = up_block(
                    sample,
                    temb=t_emb,
                    encoder_hidden_states=encoder_hidden_states,
                    res_hidden_states_tuple=res_samples,
                    deterministic=not train,
                )
            else:
                sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train)

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = nn.silu(sample)
        sample = self.conv_out(sample)
316
        sample = jnp.transpose(sample, (0, 3, 1, 2))
317
318
319
320
321

        if not return_dict:
            return (sample,)

        return FlaxUNet2DConditionOutput(sample=sample)