scheduling_ddim.py 8.47 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
27
28
29


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
36
37
38
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
39

40
41
42
43
44
45
46
47
48
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
49
50


Patrick von Platen's avatar
Patrick von Platen committed
51
class DDIMScheduler(SchedulerMixin, ConfigMixin):
52
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
53
54
    def __init__(
        self,
55
56
57
58
59
60
61
62
63
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        timestep_values: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
        tensor_format: str = "pt",
Patrick von Platen's avatar
Patrick von Platen committed
64
65
    ):

66
        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
67
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
68
69
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
Nathan Lambert's avatar
Nathan Lambert committed
70
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
71
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
72
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
73
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
77
78
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
79
80
81

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
82
        # `set_alpha_to_one` decides whether we set this paratemer simply to one or
83
        # whether we use the final alpha of the "non-previous" one.
84
        self.final_alpha_cumprod = np.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
85

86
87
        # setable values
        self.num_inference_steps = None
Nathan Lambert's avatar
Nathan Lambert committed
88
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
Patrick von Platen's avatar
Patrick von Platen committed
89

Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

93
94
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
95
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
99
100
101
102
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

103
    def set_timesteps(self, num_inference_steps: int, offset: int = 0):
104
        self.num_inference_steps = num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
        self.timesteps = np.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
        )[::-1].copy()
108
        self.timesteps += offset
109
110
111
112
        self.set_format(tensor_format=self.tensor_format)

    def step(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
113
        model_output: Union[torch.FloatTensor, np.ndarray],
114
115
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
Patrick von Platen's avatar
Patrick von Platen committed
116
117
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
118
        generator=None,
119
120
121
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:

122
123
124
125
126
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
132
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
133
134
        # - std_dev_t -> sigma_t
        # - eta -> η
135
136
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
137

138
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
139
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
140
141

        # 2. compute alphas, betas
142
        alpha_prod_t = self.alphas_cumprod[timestep]
143
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
144
145
        beta_prod_t = 1 - alpha_prod_t

146
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
147
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
148
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
149
150

        # 4. Clip "predicted x_0"
151
        if self.config.clip_sample:
152
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
156
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
157
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
158

Patrick von Platen's avatar
Patrick von Platen committed
159
160
161
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
162

Patrick von Platen's avatar
Patrick von Platen committed
163
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
164
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
165
166

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
167
168
169
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
170
171
            device = model_output.device if torch.is_tensor(model_output) else "cpu"
            noise = torch.randn(model_output.shape, generator=generator).to(device)
172
173
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

Patrick von Platen's avatar
Patrick von Platen committed
174
            if not torch.is_tensor(model_output):
175
176
177
                variance = variance.numpy()

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
178

179
180
181
182
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
183

184
185
186
187
188
189
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> Union[torch.FloatTensor, np.ndarray]:
190
191
192
193
194
195
196
197
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
198
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
199
        return self.config.num_train_timesteps