test_pipeline_flux_redux.py 4.73 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
import gc
import unittest

import numpy as np
import torch

from diffusers import FluxPipeline, FluxPriorReduxPipeline
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
10
    Expectations,
11
    backend_empty_cache,
Aryan's avatar
Aryan committed
12
    numpy_cosine_similarity_distance,
13
    require_big_accelerator,
Aryan's avatar
Aryan committed
14
15
16
17
18
19
    slow,
    torch_device,
)


@slow
20
@require_big_accelerator
Aryan's avatar
Aryan committed
21
22
class FluxReduxSlowTests(unittest.TestCase):
    pipeline_class = FluxPriorReduxPipeline
23
    repo_id = "black-forest-labs/FLUX.1-Redux-dev"
Aryan's avatar
Aryan committed
24
25
26
27
28
29
    base_pipeline_class = FluxPipeline
    base_repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
30
        backend_empty_cache(torch_device)
Aryan's avatar
Aryan committed
31
32
33
34

    def tearDown(self):
        super().tearDown()
        gc.collect()
35
        backend_empty_cache(torch_device)
Aryan's avatar
Aryan committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def get_inputs(self, device, seed=0):
        init_image = load_image(
            "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
        )
        return {"image": init_image}

    def get_base_pipeline_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        return {
            "num_inference_steps": 2,
            "guidance_scale": 2.0,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_redux_inference(self):
        pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
        pipe_base = self.base_pipeline_class.from_pretrained(
            self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe_redux.to(torch_device)
62
        pipe_base.enable_model_cpu_offload(device=torch_device)
Aryan's avatar
Aryan committed
63
64
65
66
67
68
69
70

        inputs = self.get_inputs(torch_device)
        base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device)

        redux_pipeline_output = pipe_redux(**inputs)
        image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0]

        image_slice = image[0, :10, :10]
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        expected_slices = Expectations(
            {
                ("cuda", 7): np.array(
                    [
                        0.30078125,
                        0.37890625,
                        0.46875,
                        0.28125,
                        0.36914062,
                        0.47851562,
                        0.28515625,
                        0.375,
                        0.4765625,
                        0.28125,
                        0.375,
                        0.48046875,
                        0.27929688,
                        0.37695312,
                        0.47851562,
                        0.27734375,
                        0.38085938,
                        0.4765625,
                        0.2734375,
                        0.38085938,
                        0.47265625,
                        0.27539062,
                        0.37890625,
                        0.47265625,
                        0.27734375,
                        0.37695312,
                        0.47070312,
                        0.27929688,
                        0.37890625,
                        0.47460938,
                    ],
                    dtype=np.float32,
                ),
                ("xpu", 3): np.array(
                    [
                        0.20507812,
                        0.30859375,
                        0.3984375,
                        0.18554688,
                        0.30078125,
                        0.41015625,
                        0.19921875,
                        0.3125,
                        0.40625,
                        0.19726562,
                        0.3125,
                        0.41601562,
                        0.19335938,
                        0.31445312,
                        0.4140625,
                        0.1953125,
                        0.3203125,
                        0.41796875,
                        0.19726562,
                        0.32421875,
                        0.41992188,
                        0.19726562,
                        0.32421875,
                        0.41992188,
                        0.20117188,
                        0.32421875,
                        0.41796875,
                        0.203125,
                        0.32617188,
                        0.41796875,
                    ],
                    dtype=np.float32,
                ),
            }
Aryan's avatar
Aryan committed
144
        )
145
146
        expected_slice = expected_slices.get_expectation()

Aryan's avatar
Aryan committed
147
148
149
        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4