test_pipeline_flux_redux.py 3.24 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
import gc
import unittest

import numpy as np
import pytest
import torch

from diffusers import FluxPipeline, FluxPriorReduxPipeline
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
11
    backend_empty_cache,
Aryan's avatar
Aryan committed
12
    numpy_cosine_similarity_distance,
13
    require_big_accelerator,
Aryan's avatar
Aryan committed
14
15
16
17
18
19
    slow,
    torch_device,
)


@slow
20
@require_big_accelerator
Aryan's avatar
Aryan committed
21
22
23
24
25
26
27
28
29
30
@pytest.mark.big_gpu_with_torch_cuda
class FluxReduxSlowTests(unittest.TestCase):
    pipeline_class = FluxPriorReduxPipeline
    repo_id = "YiYiXu/yiyi-redux"  # update to "black-forest-labs/FLUX.1-Redux-dev" once PR is merged
    base_pipeline_class = FluxPipeline
    base_repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
31
        backend_empty_cache(torch_device)
Aryan's avatar
Aryan committed
32
33
34
35

    def tearDown(self):
        super().tearDown()
        gc.collect()
36
        backend_empty_cache(torch_device)
Aryan's avatar
Aryan committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    def get_inputs(self, device, seed=0):
        init_image = load_image(
            "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
        )
        return {"image": init_image}

    def get_base_pipeline_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        return {
            "num_inference_steps": 2,
            "guidance_scale": 2.0,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_redux_inference(self):
        pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
        pipe_base = self.base_pipeline_class.from_pretrained(
            self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe_redux.to(torch_device)
63
        pipe_base.enable_model_cpu_offload(device=torch_device)
Aryan's avatar
Aryan committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        inputs = self.get_inputs(torch_device)
        base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device)

        redux_pipeline_output = pipe_redux(**inputs)
        image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0]

        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
                0.30078125,
                0.37890625,
                0.46875,
                0.28125,
                0.36914062,
                0.47851562,
                0.28515625,
                0.375,
                0.4765625,
                0.28125,
                0.375,
                0.48046875,
                0.27929688,
                0.37695312,
                0.47851562,
                0.27734375,
                0.38085938,
                0.4765625,
                0.2734375,
                0.38085938,
                0.47265625,
                0.27539062,
                0.37890625,
                0.47265625,
                0.27734375,
                0.37695312,
                0.47070312,
                0.27929688,
                0.37890625,
                0.47460938,
            ],
            dtype=np.float32,
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4