test_controlnet_flux.py 9.02 KB
Newer Older
王奇勋's avatar
王奇勋 committed
1
# coding=utf-8
Aryan's avatar
Aryan committed
2
# Copyright 2025 HuggingFace Inc and The InstantX Team.
王奇勋's avatar
王奇勋 committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from huggingface_hub import hf_hub_download
王奇勋's avatar
王奇勋 committed
22
23
24
25
26
27
28
29
30
31
32
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxControlNetPipeline,
    FluxTransformer2DModel,
)
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
33
    backend_empty_cache,
王奇勋's avatar
王奇勋 committed
34
    enable_full_determinism,
35
    nightly,
36
    numpy_cosine_similarity_distance,
37
    require_big_accelerator,
王奇勋's avatar
王奇勋 committed
38
39
40
41
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

42
from ..test_pipelines_common import FluxIPAdapterTesterMixin, PipelineTesterMixin
王奇勋's avatar
王奇勋 committed
43
44
45
46
47


enable_full_determinism()


48
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxIPAdapterTesterMixin):
王奇勋's avatar
王奇勋 committed
49
50
51
52
    pipeline_class = FluxControlNetPipeline

    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Aryan's avatar
Aryan committed
53
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
54
    test_group_offloading = True
王奇勋's avatar
王奇勋 committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=16,
            num_layers=1,
            num_single_layers=1,
            attention_head_dim=16,
            num_attention_heads=2,
            joint_attention_dim=32,
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
        )

        torch.manual_seed(0)
        controlnet = FluxControlNetModel(
            patch_size=1,
            in_channels=16,
            num_layers=1,
            num_single_layers=1,
            attention_head_dim=16,
            num_attention_heads=2,
            joint_attention_dim=32,
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
        )

        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )
        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
131
132
            "image_encoder": None,
            "feature_extractor": None,
王奇勋's avatar
王奇勋 committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

    def test_controlnet_flux(self):
        components = self.get_dummy_components()
        flux_pipe = FluxControlNetPipeline(**components)
        flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16)
        flux_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = flux_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)

        expected_slice = np.array(
177
            [0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156]
王奇勋's avatar
王奇勋 committed
178
179
        )

180
181
182
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f"Expected: {expected_slice}, got: {image_slice.flatten()}"
        )
王奇勋's avatar
王奇勋 committed
183
184
185
186
187

    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

Dhruv Nair's avatar
Dhruv Nair committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 56)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update(
                {
                    "control_image": randn_tensor(
                        (1, 3, height, width),
                        device=torch_device,
                        dtype=torch.float16,
                    )
                }
            )
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
            assert (output_height, output_width) == (expected_height, expected_width)

王奇勋's avatar
王奇勋 committed
210

211
@nightly
212
@require_big_accelerator
王奇勋's avatar
王奇勋 committed
213
214
215
216
217
218
class FluxControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
219
        backend_empty_cache(torch_device)
王奇勋's avatar
王奇勋 committed
220
221
222
223

    def tearDown(self):
        super().tearDown()
        gc.collect()
224
        backend_empty_cache(torch_device)
王奇勋's avatar
王奇勋 committed
225
226
227
228
229
230

    def test_canny(self):
        controlnet = FluxControlNetModel.from_pretrained(
            "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
        )
        pipe = FluxControlNetPipeline.from_pretrained(
231
232
233
234
235
            "black-forest-labs/FLUX.1-dev",
            text_encoder=None,
            text_encoder_2=None,
            controlnet=controlnet,
            torch_dtype=torch.bfloat16,
236
        ).to(torch_device)
王奇勋's avatar
王奇勋 committed
237
238
239
240
241
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        control_image = load_image(
            "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
242
243
244
245
        ).resize((512, 512))

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
246
        ).to(torch_device)
247
248
249
250
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
251
        ).to(torch_device)
王奇勋's avatar
王奇勋 committed
252
253

        output = pipe(
254
255
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
王奇勋's avatar
王奇勋 committed
256
257
258
259
            control_image=control_image,
            controlnet_conditioning_scale=0.6,
            num_inference_steps=2,
            guidance_scale=3.5,
260
            max_sequence_length=256,
王奇勋's avatar
王奇勋 committed
261
            output_type="np",
262
263
            height=512,
            width=512,
王奇勋's avatar
王奇勋 committed
264
265
266
267
268
            generator=generator,
        )

        image = output.images[0]

269
        assert image.shape == (512, 512, 3)
王奇勋's avatar
王奇勋 committed
270
271
272

        original_image = image[-3:, -3:, -1].flatten()

273
        expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773])
王奇勋's avatar
王奇勋 committed
274

275
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2