test_controlnet_flux.py 8.92 KB
Newer Older
王奇勋's avatar
王奇勋 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
20
import pytest
王奇勋's avatar
王奇勋 committed
21
import torch
22
from huggingface_hub import hf_hub_download
王奇勋's avatar
王奇勋 committed
23
24
25
26
27
28
29
30
31
32
33
34
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxControlNetPipeline,
    FluxTransformer2DModel,
)
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
35
    nightly,
36
37
    numpy_cosine_similarity_distance,
    require_big_gpu_with_torch_cuda,
王奇勋's avatar
王奇勋 committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = FluxControlNetPipeline

    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Aryan's avatar
Aryan committed
53
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
54
    test_group_offloading = True
王奇勋's avatar
王奇勋 committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=16,
            num_layers=1,
            num_single_layers=1,
            attention_head_dim=16,
            num_attention_heads=2,
            joint_attention_dim=32,
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
        )

        torch.manual_seed(0)
        controlnet = FluxControlNetModel(
            patch_size=1,
            in_channels=16,
            num_layers=1,
            num_single_layers=1,
            attention_head_dim=16,
            num_attention_heads=2,
            joint_attention_dim=32,
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
        )

        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )
        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

    def test_controlnet_flux(self):
        components = self.get_dummy_components()
        flux_pipe = FluxControlNetPipeline(**components)
        flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16)
        flux_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = flux_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)

        expected_slice = np.array(
175
            [0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156]
王奇勋's avatar
王奇勋 committed
176
177
178
179
180
181
182
183
184
185
        )

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f"Expected: {expected_slice}, got: {image_slice.flatten()}"

    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

Dhruv Nair's avatar
Dhruv Nair committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 56)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update(
                {
                    "control_image": randn_tensor(
                        (1, 3, height, width),
                        device=torch_device,
                        dtype=torch.float16,
                    )
                }
            )
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
            assert (output_height, output_width) == (expected_height, expected_width)

王奇勋's avatar
王奇勋 committed
208

209
@nightly
210
211
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
王奇勋's avatar
王奇勋 committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
class FluxControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = FluxControlNetModel.from_pretrained(
            "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
        )
        pipe = FluxControlNetPipeline.from_pretrained(
230
231
232
233
234
            "black-forest-labs/FLUX.1-dev",
            text_encoder=None,
            text_encoder_2=None,
            controlnet=controlnet,
            torch_dtype=torch.bfloat16,
235
        ).to(torch_device)
王奇勋's avatar
王奇勋 committed
236
237
238
239
240
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        control_image = load_image(
            "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
241
242
243
244
        ).resize((512, 512))

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
245
        ).to(torch_device)
246
247
248
249
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
250
        ).to(torch_device)
王奇勋's avatar
王奇勋 committed
251
252

        output = pipe(
253
254
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
王奇勋's avatar
王奇勋 committed
255
256
257
258
            control_image=control_image,
            controlnet_conditioning_scale=0.6,
            num_inference_steps=2,
            guidance_scale=3.5,
259
            max_sequence_length=256,
王奇勋's avatar
王奇勋 committed
260
            output_type="np",
261
262
            height=512,
            width=512,
王奇勋's avatar
王奇勋 committed
263
264
265
266
267
            generator=generator,
        )

        image = output.images[0]

268
        assert image.shape == (512, 512, 3)
王奇勋's avatar
王奇勋 committed
269
270
271

        original_image = image[-3:, -3:, -1].flatten()

272
        expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773])
王奇勋's avatar
王奇勋 committed
273

274
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2