pipeline_pndm.py 5.24 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm

from ..pipeline_utils import DiffusionPipeline


class PNDM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

    def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
        # eta corresponds to η in paper and should be between [0, 1]
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        num_trained_timesteps = self.noise_scheduler.timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = torch.randn(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
Patrick von Platen's avatar
Patrick von Platen committed
43
            generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
        )
        image = image.to(torch_device)

Patrick von Platen's avatar
up  
Patrick von Platen committed
47
        seq = list(inference_step_times)
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
51
        seq_next = [-1] + list(seq[:-1])
        model = self.unet

        ets = []
Patrick von Platen's avatar
up  
Patrick von Platen committed
52
53
54
55
56
57
        prev_noises = []
        step_idx = len(seq) - 1
        while step_idx >= 0:
            i = seq[step_idx]
            j = seq_next[step_idx]

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
            t = (torch.ones(image.shape[0]) * i)
            t_next = (torch.ones(image.shape[0]) * j)

Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
            residual = model(image.to("cuda"), t.to("cuda"))
            residual = residual.to("cpu")

            t_list = [t, (t+t_next)/2, t_next]

Patrick von Platen's avatar
up  
Patrick von Platen committed
66
67
            ets.append(residual)
            if len(ets) <= 3:
Patrick von Platen's avatar
Patrick von Platen committed
68
                image = image.to("cpu")
Patrick von Platen's avatar
up  
Patrick von Platen committed
69
70
                x_2 = self.noise_scheduler.transfer(image.to("cpu"), t_list[0], t_list[1], residual)

Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
74
75
76
77
78
79
80
                e_2 = model(x_2.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_3 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], e_2)
                e_3 = model(x_3.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_4 = self.noise_scheduler.transfer(image, t_list[0], t_list[2], e_3)
                e_4 = model(x_4.to("cuda"), t_list[2].to("cuda")).to("cpu")
                residual = (1 / 6) * (residual + 2 * e_2 + 2 * e_3 + e_4)
            else:
                residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])

            img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)
Patrick von Platen's avatar
up  
Patrick von Platen committed
81
            image = img_next
Patrick von Platen's avatar
Patrick von Platen committed
82

Patrick von Platen's avatar
up  
Patrick von Platen committed
83
            step_idx = step_idx - 1
Patrick von Platen's avatar
Patrick von Platen committed
84

Patrick von Platen's avatar
up  
Patrick von Platen committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#            if len(prev_noises) in [1, 2]:
#                t = (t + t_next) / 2
#            elif len(prev_noises) == 3:
#                t = t_next / 2

#            if len(prev_noises) == 0:
#                ets.append(residual)
#
#            if len(ets) > 3:
#                residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
#                step_idx = step_idx - 1
#            elif len(ets) <= 3 and len(prev_noises) == 3:
#                residual = (1 / 6) * (prev_noises[-3] + 2 * prev_noises[-2] + 2 * prev_noises[-1] + residual)
#                prev_noises = []
#                step_idx = step_idx - 1
#            elif len(ets) <= 3 and len(prev_noises) < 3:
#                prev_noises.append(residual)
#                if len(prev_noises) < 2:
#                    t_next = (t + t_next) / 2
#
#            image = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

        return image

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
#        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
            # 1. predict noise residual
#            with torch.no_grad():
#                residual = self.unet(image, inference_step_times[t])
#
            # 2. predict previous mean of image x_t-1
#            pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
#
            # 3. optionally sample variance
#            variance = 0
#            if eta > 0:
#                noise = torch.randn(image.shape, generator=generator).to(image.device)
#                variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
#
            # 4. set current image to prev_image: x_t -> x_t-1
#            image = pred_prev_image + variance