pipeline_pndm.py 4.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm

from ..pipeline_utils import DiffusionPipeline


class PNDM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

    def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
        # eta corresponds to η in paper and should be between [0, 1]
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        num_trained_timesteps = self.noise_scheduler.timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = torch.randn(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
Patrick von Platen's avatar
Patrick von Platen committed
43
            generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
50
51
52
53
54
55
        )
        image = image.to(torch_device)

        seq = inference_step_times
        seq_next = [-1] + list(seq[:-1])
        model = self.unet

        ets = []
        for i, j in zip(reversed(seq), reversed(seq_next)):
            t = (torch.ones(image.shape[0]) * i)
            t_next = (torch.ones(image.shape[0]) * j)

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
            residual = model(image.to("cuda"), t.to("cuda"))
            residual = residual.to("cpu")

            t_list = [t, (t+t_next)/2, t_next]

            if len(ets) <= 2:
                ets.append(residual)
                image = image.to("cpu")
                x_2 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], residual)
                e_2 = model(x_2.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_3 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], e_2)
                e_3 = model(x_3.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_4 = self.noise_scheduler.transfer(image, t_list[0], t_list[2], e_3)
                e_4 = model(x_4.to("cuda"), t_list[2].to("cuda")).to("cpu")
                residual = (1 / 6) * (residual + 2 * e_2 + 2 * e_3 + e_4)
            else:
                ets.append(residual)
                residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])

            img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)

#            with torch.no_grad():
#                t_start, t_end = t_next, t
#                img_next, ets = self.noise_scheduler.step(image, t_start, t_end, model, ets)
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

            image = img_next

        return image

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
#        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
            # 1. predict noise residual
#            with torch.no_grad():
#                residual = self.unet(image, inference_step_times[t])
#
            # 2. predict previous mean of image x_t-1
#            pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
#
            # 3. optionally sample variance
#            variance = 0
#            if eta > 0:
#                noise = torch.randn(image.shape, generator=generator).to(image.device)
#                variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
#
            # 4. set current image to prev_image: x_t -> x_t-1
#            image = pred_prev_image + variance