modeling_ddim.py 2.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import tqdm
from diffusers import DiffusionPipeline

22
23
24
25
26
27

class DDIM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
28
    def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
Patrick von Platen's avatar
Patrick von Platen committed
29
        # eta corresponds to η in paper and should be between [0, 1]
30
31
32
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
33
34
        num_trained_timesteps = self.noise_scheduler.num_timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
35

36
        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
37
38

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )
Patrick von Platen's avatar
Patrick von Platen committed
44

Patrick von Platen's avatar
Patrick von Platen committed
45
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
53
54
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
55
        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
56
57
            # 1. predict noise residual
            with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
58
                residual = self.unet(image, inference_step_times[t])
Patrick von Platen's avatar
Patrick von Platen committed
59

Patrick von Platen's avatar
Patrick von Platen committed
60
            # 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
61
            pred_prev_image = self.noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
            # 3. optionally sample variance
            variance = 0
            if eta > 0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
                variance = self.noise_scheduler.get_variance(t).sqrt() * eta * noise
Patrick von Platen's avatar
Patrick von Platen committed
68

Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
            # 4. set current image to prev_image: x_t -> x_t-1
            image = pred_prev_image + variance

Patrick von Platen's avatar
Patrick von Platen committed
72
        return image