modeling_ddim.py 4.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import tqdm
from diffusers import DiffusionPipeline

22
23
24
25
26
27

class DDIM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
28
    def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
Patrick von Platen's avatar
Patrick von Platen committed
29
        # eta corresponds to η in paper and should be between [0, 1]
30
31
32
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
33
34
        num_trained_timesteps = self.noise_scheduler.num_timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
35

36
        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
37
38

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )
Patrick von Platen's avatar
Patrick von Platen committed
44

Patrick von Platen's avatar
Patrick von Platen committed
45
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
53
54
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
55
        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
            # 1. predict noise residual
            with torch.no_grad():
                pred_noise_t = self.unet(image, inference_step_times[t])

            # 2. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
61
            train_step = inference_step_times[t]
Patrick von Platen's avatar
Patrick von Platen committed
62
            prev_train_step = inference_step_times[t - 1] if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
63

Patrick von Platen's avatar
Patrick von Platen committed
64
            # 3. compute alphas, betas
Patrick von Platen's avatar
Patrick von Platen committed
65
66
            alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
            alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
Patrick von Platen's avatar
Patrick von Platen committed
67
68
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73

            # 4. Compute predicted previous image from predicted noise
            # First: compute predicted original image from predicted noise also called
            # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt()
Patrick von Platen's avatar
Patrick von Platen committed
74

Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
            # Second: Clip "predicted x_0"
            pred_original_image = torch.clamp(pred_original_image, -1, 1)

            # Third: Compute variance: "sigma_t(η)" -> see formula (16)
            # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
            std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
            std_dev_t = eta * std_dev_t

            # Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t

            # Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction

            # 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image
            # Note: eta = 1.0 essentially corresponds to DDPM
Patrick von Platen's avatar
Patrick von Platen committed
91
92
            if eta > 0.0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
93
                prev_image = pred_prev_image + std_dev_t * noise
Patrick von Platen's avatar
Patrick von Platen committed
94
            else:
Patrick von Platen's avatar
Patrick von Platen committed
95
96
97
98
                prev_image = pred_prev_image

            # 6. Set current image to prev_image: x_t -> x_t-1
            image = prev_image
Patrick von Platen's avatar
Patrick von Platen committed
99
100

        return image