textual_inversion.py 38.6 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

Suraj Patil's avatar
Suraj Patil committed
16
import argparse
Suraj Patil's avatar
Suraj Patil committed
17
import logging
Suraj Patil's avatar
Suraj Patil committed
18
19
20
import math
import os
import random
21
import shutil
22
import warnings
Suraj Patil's avatar
Suraj Patil committed
23
24
25
from pathlib import Path

import numpy as np
26
import PIL
27
import safetensors
Suraj Patil's avatar
Suraj Patil committed
28
29
30
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
31
import transformers
Suraj Patil's avatar
Suraj Patil committed
32
33
from accelerate import Accelerator
from accelerate.logging import get_logger
34
from accelerate.utils import ProjectConfiguration, set_seed
35
from huggingface_hub import create_repo, upload_folder
36
37
38
39
40
41
42
43
44
45

# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

import diffusers
46
47
48
49
50
51
52
53
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
Suraj Patil's avatar
Suraj Patil committed
54
from diffusers.optimization import get_scheduler
55
from diffusers.utils import check_min_version, is_wandb_available
56
from diffusers.utils.import_utils import is_xformers_available
Suraj Patil's avatar
Suraj Patil committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58

59
60
61
if is_wandb_available():
    import wandb

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------

Suraj Patil's avatar
Suraj Patil committed
80

81
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
82
check_min_version("0.24.0.dev0")
83

Suraj Patil's avatar
Suraj Patil committed
84
85
86
logger = get_logger(__name__)


87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def save_model_card(repo_id: str, images=None, base_model=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
    """
    model_card = f"""
# Textual inversion text2image fine-tuning - {repo_id}
These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


115
116
117
118
119
120
121
122
123
124
125
126
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=unet,
        vae=vae,
127
        safety_checker=None,
128
        revision=args.revision,
129
        variant=args.variant,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()
159
    return images
160
161


162
def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path, safe_serialization=True):
163
    logger.info("Saving embeddings")
164
165
166
167
168
    learned_embeds = (
        accelerator.unwrap_model(text_encoder)
        .get_input_embeddings()
        .weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1]
    )
169
    learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
170
171
172
173
174

    if safe_serialization:
        safetensors.torch.save_file(learned_embeds_dict, save_path, metadata={"format": "pt"})
    else:
        torch.save(learned_embeds_dict, save_path)
175
176


Suraj Patil's avatar
Suraj Patil committed
177
178
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
179
180
181
182
183
184
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
185
    parser.add_argument(
186
        "--save_as_full_pipeline",
187
        action="store_true",
188
        help="Save the complete stable diffusion pipeline.",
189
    )
190
191
192
193
194
195
    parser.add_argument(
        "--num_vectors",
        type=int,
        default=1,
        help="How many textual inversion vectors shall be used to learn the concept.",
    )
Suraj Patil's avatar
Suraj Patil committed
196
197
198
199
200
201
202
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
203
204
205
206
207
208
209
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
210
211
212
213
214
215
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
Suraj Patil's avatar
Suraj Patil committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
254
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
Suraj Patil's avatar
Suraj Patil committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
272
273
274
275
276
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
Suraj Patil's avatar
Suraj Patil committed
277
278
279
280
281
282
283
284
285
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
286
        default=False,
Suraj Patil's avatar
Suraj Patil committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
301
302
303
304
305
306
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
307
308
309
310
311
312
313
314
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
347
348
349
350
351
352
353
354
355
356
357
358
359
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
360
361
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
362
363
        ),
    )
364
365
366
367
368
369
370
371
372
373
374
375
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
376
377
378
379
380
381
382
383
384
385
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
386
387
388
    parser.add_argument(
        "--validation_epochs",
        type=int,
389
        default=None,
390
        help=(
391
            "Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt"
392
393
394
395
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
396
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
397
398
399
400
401
402
403
404
405
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
406
    parser.add_argument(
407
        "--checkpoints_total_limit",
408
409
        type=int,
        default=None,
410
        help=("Max number of checkpoints to store."),
411
    )
412
413
414
415
416
417
418
419
420
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
421
422
423
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
424
425
426
427
428
    parser.add_argument(
        "--no_safe_serialization",
        action="store_true",
        help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.",
    )
Suraj Patil's avatar
Suraj Patil committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
525
526
527
528
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
Suraj Patil's avatar
Suraj Patil committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
Patrick von Platen's avatar
Patrick von Platen committed
560
561
562
563
            (
                h,
                w,
            ) = (
Suraj Patil's avatar
Suraj Patil committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def main():
    args = parse_args()
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
583
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
Suraj Patil's avatar
Suraj Patil committed
584
585
586
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
587
        log_with=args.report_to,
588
        project_config=accelerator_project_config,
Suraj Patil's avatar
Suraj Patil committed
589
590
    )

591
592
593
594
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

Suraj Patil's avatar
Suraj Patil committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

Suraj Patil's avatar
Suraj Patil committed
609
610
611
612
613
614
    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
615
        if args.output_dir is not None:
Suraj Patil's avatar
Suraj Patil committed
616
617
            os.makedirs(args.output_dir, exist_ok=True)

618
619
620
621
622
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

Suraj Patil's avatar
Suraj Patil committed
623
    # Load tokenizer
Suraj Patil's avatar
Suraj Patil committed
624
    if args.tokenizer_name:
625
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
Suraj Patil's avatar
Suraj Patil committed
626
    elif args.pretrained_model_name_or_path:
627
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
628

Suraj Patil's avatar
Suraj Patil committed
629
630
631
632
633
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
634
635
636
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
    )
Suraj Patil's avatar
Suraj Patil committed
637
    unet = UNet2DConditionModel.from_pretrained(
638
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
Suraj Patil's avatar
Suraj Patil committed
639
640
    )

641
    # Add the placeholder token in tokenizer
642
643
644
645
646
647
648
649
650
651
652
653
654
    placeholder_tokens = [args.placeholder_token]

    if args.num_vectors < 1:
        raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}")

    # add dummy tokens for multi-vector
    additional_tokens = []
    for i in range(1, args.num_vectors):
        additional_tokens.append(f"{args.placeholder_token}_{i}")
    placeholder_tokens += additional_tokens

    num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
    if num_added_tokens != args.num_vectors:
655
656
657
        raise ValueError(
            f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
            " `placeholder_token` that is not already in the tokenizer."
Suraj Patil's avatar
Suraj Patil committed
658
659
660
661
662
663
664
665
666
        )

    # Convert the initializer_token, placeholder_token to ids
    token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
    # Check if initializer_token is a single token or a sequence of tokens
    if len(token_ids) > 1:
        raise ValueError("The initializer token must be a single token.")

    initializer_token_id = token_ids[0]
667
    placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
Suraj Patil's avatar
Suraj Patil committed
668
669
670
671
672
673

    # Resize the token embeddings as we are adding new special tokens to the tokenizer
    text_encoder.resize_token_embeddings(len(tokenizer))

    # Initialise the newly added placeholder token with the embeddings of the initializer token
    token_embeds = text_encoder.get_input_embeddings().weight.data
674
675
676
    with torch.no_grad():
        for token_id in placeholder_token_ids:
            token_embeds[token_id] = token_embeds[initializer_token_id].clone()
Suraj Patil's avatar
Suraj Patil committed
677
678

    # Freeze vae and unet
679
680
    vae.requires_grad_(False)
    unet.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
681
    # Freeze all parameters except for the token embeddings in text encoder
682
683
684
    text_encoder.text_model.encoder.requires_grad_(False)
    text_encoder.text_model.final_layer_norm.requires_grad_(False)
    text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
685

Suraj Patil's avatar
Suraj Patil committed
686
687
688
689
690
691
692
693
694
    if args.gradient_checkpointing:
        # Keep unet in train mode if we are using gradient checkpointing to save memory.
        # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
        unet.train()
        text_encoder.gradient_checkpointing_enable()
        unet.enable_gradient_checkpointing()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
695
696
697
698
699
700
701
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
Suraj Patil's avatar
Suraj Patil committed
702
703
704
705
706
707
708
709
710
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

Suraj Patil's avatar
Suraj Patil committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    optimizer = torch.optim.AdamW(
        text_encoder.get_input_embeddings().parameters(),  # only optimize the embeddings
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
725
    # Dataset and DataLoaders creation:
Suraj Patil's avatar
Suraj Patil committed
726
727
728
729
    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
730
        placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
Suraj Patil's avatar
Suraj Patil committed
731
732
733
734
735
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )
736
737
738
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
739
740
741
742
743
744
745
746
747
    if args.validation_epochs is not None:
        warnings.warn(
            f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}."
            " Deprecated validation_epochs in favor of `validation_steps`"
            f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}",
            FutureWarning,
            stacklevel=2,
        )
        args.validation_steps = args.validation_epochs * len(train_dataset)
Suraj Patil's avatar
Suraj Patil committed
748
749
750
751
752
753
754
755
756
757
758

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
759
760
761
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles,
Suraj Patil's avatar
Suraj Patil committed
762
763
    )

764
    text_encoder.train()
Suraj Patil's avatar
Suraj Patil committed
765
    # Prepare everything with our `accelerator`.
Suraj Patil's avatar
Suraj Patil committed
766
767
768
769
    text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        text_encoder, optimizer, train_dataloader, lr_scheduler
    )

770
771
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
772
773
774
775
776
777
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
778
    # Move vae and unet to device and cast to weight_dtype
779
780
    unet.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("textual_inversion", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
804
805
    global_step = 0
    first_epoch = 0
Suraj Patil's avatar
Suraj Patil committed
806
    # Potentially load in the weights and states from a previous save
807
808
809
810
811
812
813
814
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
815
816
817
818
819
820
821
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
822
            initial_global_step = 0
823
824
825
826
827
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

828
            initial_global_step = global_step
829
            first_epoch = global_step // num_update_steps_per_epoch
830

831
832
833
834
835
836
837
838
839
840
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
Suraj Patil's avatar
Suraj Patil committed
841

842
    # keep original embeddings as reference
843
    orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone()
844

845
    for epoch in range(first_epoch, args.num_train_epochs):
Suraj Patil's avatar
Suraj Patil committed
846
847
848
849
        text_encoder.train()
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(text_encoder):
                # Convert images to latent space
850
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach()
851
                latents = latents * vae.config.scaling_factor
Suraj Patil's avatar
Suraj Patil committed
852
853

                # Sample noise that we'll add to the latents
854
                noise = torch.randn_like(latents)
Suraj Patil's avatar
Suraj Patil committed
855
856
                bsz = latents.shape[0]
                # Sample a random timestep for each image
857
858
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
Suraj Patil's avatar
Suraj Patil committed
859
860
861
862
863
864

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
865
                encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
866
867

                # Predict the noise residual
868
869
870
871
872
873
874
875
876
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
Suraj Patil's avatar
Suraj Patil committed
877

878
879
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

Suraj Patil's avatar
Suraj Patil committed
880
881
882
883
884
885
                accelerator.backward(loss)

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

886
                # Let's make sure we don't update any embedding weights besides the newly added token
887
888
889
                index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
                index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False

890
                with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
891
892
893
                    accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
                        index_no_updates
                    ] = orig_embeds_params[index_no_updates]
894

Suraj Patil's avatar
Suraj Patil committed
895
896
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
897
                images = []
Suraj Patil's avatar
Suraj Patil committed
898
899
                progress_bar.update(1)
                global_step += 1
900
                if global_step % args.save_steps == 0:
901
902
                    weight_name = (
                        f"learned_embeds-steps-{global_step}.bin"
Patrick von Platen's avatar
Patrick von Platen committed
903
                        if args.no_safe_serialization
904
905
906
                        else f"learned_embeds-steps-{global_step}.safetensors"
                    )
                    save_path = os.path.join(args.output_dir, weight_name)
907
908
909
910
911
912
913
914
                    save_progress(
                        text_encoder,
                        placeholder_token_ids,
                        accelerator,
                        args,
                        save_path,
                        safe_serialization=not args.no_safe_serialization,
                    )
Suraj Patil's avatar
Suraj Patil committed
915

916
917
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

938
939
940
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
941
942

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
943
944
945
                        images = log_validation(
                            text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch
                        )
946

Suraj Patil's avatar
Suraj Patil committed
947
948
949
950
951
952
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break
953
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
954
    accelerator.wait_for_everyone()
Suraj Patil's avatar
Suraj Patil committed
955
    if accelerator.is_main_process:
956
        if args.push_to_hub and not args.save_as_full_pipeline:
957
958
959
            logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
            save_full_model = True
        else:
960
            save_full_model = args.save_as_full_pipeline
961
        if save_full_model:
962
963
            pipeline = StableDiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
964
965
966
967
968
969
970
                text_encoder=accelerator.unwrap_model(text_encoder),
                vae=vae,
                unet=unet,
                tokenizer=tokenizer,
            )
            pipeline.save_pretrained(args.output_dir)
        # Save the newly trained embeddings
971
972
        weight_name = "learned_embeds.bin" if args.no_safe_serialization else "learned_embeds.safetensors"
        save_path = os.path.join(args.output_dir, weight_name)
973
974
975
976
977
978
979
980
        save_progress(
            text_encoder,
            placeholder_token_ids,
            accelerator,
            args,
            save_path,
            safe_serialization=not args.no_safe_serialization,
        )
Suraj Patil's avatar
Suraj Patil committed
981
982

        if args.push_to_hub:
983
984
985
986
987
988
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
989
990
991
992
993
994
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
Suraj Patil's avatar
Suraj Patil committed
995
996
997
998
999
1000

    accelerator.end_training()


if __name__ == "__main__":
    main()