vae.py 34 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

21
from ...utils import BaseOutput
22
23
24
from ...utils.torch_utils import randn_tensor
from ..activations import get_activation
from ..attention_processor import SpatialNorm
25
from ..unets.unet_2d_blocks import (
Suraj Patil's avatar
Suraj Patil committed
26
27
28
29
30
    AutoencoderTinyBlock,
    UNetMidBlock2D,
    get_down_block,
    get_up_block,
)
renzhc's avatar
renzhc committed
31
32
33
34
from torch.nn import FuseGroupNorm as GroupNorm
from lightop import miopenConvBiasAdd as ConvBiasAdd
from ...custom_op import ConvBias as ConvBias
from ...custom_op import miopenGroupNorm
patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
@dataclass
class EncoderOutput(BaseOutput):
    r"""
    Output of encoding method.

    Args:
        latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
            The encoded latent.
    """

    latent: torch.Tensor


49
50
@dataclass
class DecoderOutput(BaseOutput):
51
    r"""
52
53
54
    Output of decoding method.

    Args:
55
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
56
            The decoded output sample from the last layer of the model.
57
58
    """

59
    sample: torch.Tensor
60
    commit_loss: Optional[torch.FloatTensor] = None
61
62


patil-suraj's avatar
patil-suraj committed
63
class Encoder(nn.Module):
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
87
88
    def __init__(
        self,
89
90
91
92
93
94
95
96
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
Will Berman's avatar
Will Berman committed
97
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
98
99
    ):
        super().__init__()
100
101
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
102
        self.conv_in = nn.Conv2d(
103
104
105
106
107
108
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
126
                downsample_padding=0,
127
                resnet_act_fn=act_fn,
128
                resnet_groups=norm_num_groups,
129
                attention_head_dim=output_channel,
130
131
132
133
134
135
136
137
138
139
140
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
141
            attention_head_dim=block_out_channels[-1],
142
            resnet_groups=norm_num_groups,
143
            temb_channels=None,
Will Berman's avatar
Will Berman committed
144
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
145
146
        )

147
        # out
148
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
149
150
151
152
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
153

154
155
        self.gradient_checkpointing = False

156
    def forward(self, sample: torch.Tensor) -> torch.Tensor:
157
        r"""The forward method of the `Encoder` class."""
158

159
160
        sample = self.conv_in(sample)

161
        if torch.is_grad_enabled() and self.gradient_checkpointing:
162
            # down
163
164
165
166
            for down_block in self.down_blocks:
                sample = self._gradient_checkpointing_func(down_block, sample)
            # middle
            sample = self._gradient_checkpointing_func(self.mid_block, sample)
167
168
169
170
171

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
172

173
174
            # middle
            sample = self.mid_block(sample)
175
176
177
178
179
180
181

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
182
183
184


class Decoder(nn.Module):
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
207
208
    def __init__(
        self,
209
210
211
212
213
214
215
216
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Will Berman's avatar
Will Berman committed
217
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
218
219
    ):
        super().__init__()
220
221
        self.layers_per_block = layers_per_block

renzhc's avatar
renzhc committed
222
223
224
225
226
227
228
229
230
        # self.conv_in = nn.Conv2d(
        #     in_channels,
        #     block_out_channels[-1],
        #     kernel_size=3,
        #     stride=1,
        #     padding=1,
        # )
        # DCU OPT: conv_bias
        self.conv_in = ConvBias(
231
232
233
234
235
236
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
237
238
239

        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
240
241
        temb_channels = in_channels if norm_type == "spatial" else None

242
243
244
245
246
247
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
248
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
249
            attention_head_dim=block_out_channels[-1],
250
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
251
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
252
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
253
254
        )

255
256
257
258
259
260
261
262
263
264
265
266
267
268
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
269
                prev_output_channel=prev_output_channel,
270
271
272
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
273
                resnet_groups=norm_num_groups,
274
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
275
276
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
277
278
279
280
281
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
282
283
284
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
renzhc's avatar
renzhc committed
285
286
287
            # self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
            # DCU OPT: gn_silu
            self.conv_norm_out = miopenGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6,mode=10)
288
        self.conv_act = nn.SiLU()
renzhc's avatar
renzhc committed
289
290
291
        # self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
        # DCU OPT: conv_bias
        self.conv_out = ConvBias(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
292

293
294
        self.gradient_checkpointing = False

295
    def forward(
Suraj Patil's avatar
Suraj Patil committed
296
        self,
297
298
299
        sample: torch.Tensor,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
300
        r"""The forward method of the `Decoder` class."""
301

302
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
303

304
        if torch.is_grad_enabled() and self.gradient_checkpointing:
305
306
            # middle
            sample = self._gradient_checkpointing_func(self.mid_block, sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
307

308
309
310
            # up
            for up_block in self.up_blocks:
                sample = self._gradient_checkpointing_func(up_block, sample, latent_embeds)
311
312
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
313
            sample = self.mid_block(sample, latent_embeds)
314
315
316

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
317
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
318

319
        # post-process
YiYi Xu's avatar
YiYi Xu committed
320
        if latent_embeds is None:
renzhc's avatar
renzhc committed
321
322
            # sample = self.conv_norm_out(sample)
            # DCU OPT: gn_silu
YiYi Xu's avatar
YiYi Xu committed
323
324
325
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
renzhc's avatar
renzhc committed
326
            sample = self.conv_act(sample)
327
328
329
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
330
331


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
332
class UpSample(nn.Module):
333
334
335
336
337
338
339
340
341
342
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
343
344
345
346
347
348
349
350
351
352
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

353
    def forward(self, x: torch.Tensor) -> torch.Tensor:
354
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

402
    def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
403
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
404
405
406
407
408
409
410
411
412
413
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
435
436
437

    def __init__(
        self,
438
439
440
441
442
443
444
445
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

517
518
    def forward(
        self,
519
520
521
522
523
        z: torch.Tensor,
        image: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
524
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
525
526
527
528
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
529
        if torch.is_grad_enabled() and self.gradient_checkpointing:
530
531
532
            # middle
            sample = self._gradient_checkpointing_func(self.mid_block, sample, latent_embeds)
            sample = sample.to(upscale_dtype)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
533

534
535
536
537
538
539
540
            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self._gradient_checkpointing_func(
                    self.condition_encoder,
                    masked_image,
                    mask,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
541
542
                )

543
544
            # up
            for up_block in self.up_blocks:
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
545
                if image is not None and mask is not None:
546
547
548
549
550
551
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = self._gradient_checkpointing_func(up_block, sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
583
584
585
586
587
588
589
590
591
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
592
    def __init__(
593
594
595
596
597
598
599
600
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
601
    ):
patil-suraj's avatar
patil-suraj committed
602
603
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
604
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
605
606
607
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
608
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
609
610
611
612
613
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
614
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

629
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
630
631
632
633
634
635
636
637
638
639
640
641
642
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

643
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
644
645
646
647
648
649
650
651
652
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

653
    def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
654
655
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
656
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
657

658
659
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
660
661
662
663
664
665
666
667
668
669
670
671

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
672
        z_q: torch.Tensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

687
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
688
689
690
691
692
693
694
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
695
        z_q: torch.Tensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
696
697
698
699
700
701
702
703
704
705

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
706
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
707
708
709
710
711
712
713
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
714
715
716
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
717

718
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
719
        # make sure sample is on the same device as the parameters and has same dtype
720
        sample = randn_tensor(
Suraj Patil's avatar
Suraj Patil committed
721
722
723
724
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
725
        )
726
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
727
728
        return x

729
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
730
731
732
733
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
Suraj Patil's avatar
Suraj Patil committed
734
735
736
737
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=[1, 2, 3],
                )
patil-suraj's avatar
patil-suraj committed
738
739
740
741
742
743
744
745
746
747
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

748
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
749
750
751
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
Suraj Patil's avatar
Suraj Patil committed
752
753
754
755
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )
patil-suraj's avatar
patil-suraj committed
756

757
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
758
        return self.mean
759
760


Aryan's avatar
Aryan committed
761
762
763
764
765
766
767
768
769
770
771
class IdentityDistribution(object):
    def __init__(self, parameters: torch.Tensor):
        self.parameters = parameters

    def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
        return self.parameters

    def mode(self) -> torch.Tensor:
        return self.parameters


772
class EncoderTiny(nn.Module):
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

790
791
792
793
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
794
795
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
796
797
798
799
800
801
802
803
804
805
806
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
Suraj Patil's avatar
Suraj Patil committed
807
808
809
810
811
812
813
814
815
816
                layers.append(
                    nn.Conv2d(
                        num_channels,
                        num_channels,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        bias=False,
                    )
                )
817
818
819
820
821
822
823
824
825

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

826
    def forward(self, x: torch.Tensor) -> torch.Tensor:
827
        r"""The forward method of the `EncoderTiny` class."""
828
        if torch.is_grad_enabled() and self.gradient_checkpointing:
829
            x = self._gradient_checkpointing_func(self.layers, x)
830
831

        else:
832
833
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
834
835
836
837
838

        return x


class DecoderTiny(nn.Module):
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

858
859
860
861
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
862
863
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
864
865
        upsampling_scaling_factor: int,
        act_fn: str,
866
        upsample_fn: str,
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
883
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
884
885

            conv_out_channel = num_channels if not is_final_block else out_channels
Suraj Patil's avatar
Suraj Patil committed
886
887
888
889
890
891
892
893
894
            layers.append(
                nn.Conv2d(
                    num_channels,
                    conv_out_channel,
                    kernel_size=3,
                    padding=1,
                    bias=is_final_block,
                )
            )
895
896
897
898

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

899
    def forward(self, x: torch.Tensor) -> torch.Tensor:
900
        r"""The forward method of the `DecoderTiny` class."""
901
902
903
        # Clamp.
        x = torch.tanh(x / 3) * 3

904
        if torch.is_grad_enabled() and self.gradient_checkpointing:
905
            x = self._gradient_checkpointing_func(self.layers, x)
906
907
908
        else:
            x = self.layers(x)

909
910
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945


class AutoencoderMixin:
    def enable_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        if not hasattr(self, "use_tiling"):
            raise NotImplementedError(f"Tiling doesn't seem to be implemented for {self.__class__.__name__}.")
        self.use_tiling = True

    def disable_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        if not hasattr(self, "use_slicing"):
            raise NotImplementedError(f"Slicing doesn't seem to be implemented for {self.__class__.__name__}.")
        self.use_slicing = True

    def disable_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False