vae.py 36 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

21
22
23
24
from ...utils import BaseOutput, is_torch_version
from ...utils.torch_utils import randn_tensor
from ..activations import get_activation
from ..attention_processor import SpatialNorm
25
from ..unets.unet_2d_blocks import (
Suraj Patil's avatar
Suraj Patil committed
26
27
28
29
30
    AutoencoderTinyBlock,
    UNetMidBlock2D,
    get_down_block,
    get_up_block,
)
patil-suraj's avatar
patil-suraj committed
31
32


33
34
35
36
37
38
39
40
41
42
43
44
45
@dataclass
class EncoderOutput(BaseOutput):
    r"""
    Output of encoding method.

    Args:
        latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
            The encoded latent.
    """

    latent: torch.Tensor


46
47
@dataclass
class DecoderOutput(BaseOutput):
48
    r"""
49
50
51
    Output of decoding method.

    Args:
52
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
53
            The decoded output sample from the last layer of the model.
54
55
    """

56
    sample: torch.Tensor
57
    commit_loss: Optional[torch.FloatTensor] = None
58
59


patil-suraj's avatar
patil-suraj committed
60
class Encoder(nn.Module):
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
84
85
    def __init__(
        self,
86
87
88
89
90
91
92
93
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
Will Berman's avatar
Will Berman committed
94
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
95
96
    ):
        super().__init__()
97
98
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
99
        self.conv_in = nn.Conv2d(
100
101
102
103
104
105
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
123
                downsample_padding=0,
124
                resnet_act_fn=act_fn,
125
                resnet_groups=norm_num_groups,
126
                attention_head_dim=output_channel,
127
128
129
130
131
132
133
134
135
136
137
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
138
            attention_head_dim=block_out_channels[-1],
139
            resnet_groups=norm_num_groups,
140
            temb_channels=None,
Will Berman's avatar
Will Berman committed
141
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
142
143
        )

144
        # out
145
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
146
147
148
149
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
150

151
152
        self.gradient_checkpointing = False

153
    def forward(self, sample: torch.Tensor) -> torch.Tensor:
154
        r"""The forward method of the `Encoder` class."""
155

156
157
        sample = self.conv_in(sample)

158
        if torch.is_grad_enabled() and self.gradient_checkpointing:
159
160
161
162
163
164
165
166

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            if is_torch_version(">=", "1.11.0"):
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(down_block), sample, use_reentrant=False
                    )
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, use_reentrant=False
                )
            else:
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
181
182
183
184
185

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
186

187
188
            # middle
            sample = self.mid_block(sample)
189
190
191
192
193
194
195

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
196
197
198


class Decoder(nn.Module):
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
221
222
    def __init__(
        self,
223
224
225
226
227
228
229
230
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Will Berman's avatar
Will Berman committed
231
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
232
233
    ):
        super().__init__()
234
235
        self.layers_per_block = layers_per_block

236
237
238
239
240
241
242
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
243
244
245

        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
246
247
        temb_channels = in_channels if norm_type == "spatial" else None

248
249
250
251
252
253
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
254
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
255
            attention_head_dim=block_out_channels[-1],
256
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
257
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
258
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
259
260
        )

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
279
                resnet_groups=norm_num_groups,
280
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
281
282
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
283
284
285
286
287
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
288
289
290
291
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
292
293
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
294

295
296
        self.gradient_checkpointing = False

297
    def forward(
Suraj Patil's avatar
Suraj Patil committed
298
        self,
299
300
301
        sample: torch.Tensor,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
302
        r"""The forward method of the `Decoder` class."""
303

304
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
305

306
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
307
        if torch.is_grad_enabled() and self.gradient_checkpointing:
patil-suraj's avatar
patil-suraj committed
308

309
310
311
312
313
314
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

315
316
317
            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
318
319
320
321
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
322
323
324
325
326
327
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
328
329
330
331
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
332
333
334
                    )
            else:
                # middle
YiYi Xu's avatar
YiYi Xu committed
335
336
337
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
338
339
340
341
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
342
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
343
344
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
345
            sample = self.mid_block(sample, latent_embeds)
346
            sample = sample.to(upscale_dtype)
347
348
349

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
350
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
351

352
        # post-process
YiYi Xu's avatar
YiYi Xu committed
353
354
355
356
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
357
358
359
360
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
361
362


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
363
class UpSample(nn.Module):
364
365
366
367
368
369
370
371
372
373
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
374
375
376
377
378
379
380
381
382
383
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

384
    def forward(self, x: torch.Tensor) -> torch.Tensor:
385
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

433
    def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
434
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
435
436
437
438
439
440
441
442
443
444
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
466
467
468

    def __init__(
        self,
469
470
471
472
473
474
475
476
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

548
549
    def forward(
        self,
550
551
552
553
554
        z: torch.Tensor,
        image: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
555
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
556
557
558
559
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
560
        if torch.is_grad_enabled() and self.gradient_checkpointing:
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
561
562
563
564
565
566
567
568
569
570

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
571
572
573
574
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
575
576
577
578
579
580
581
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
582
583
584
585
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
586
587
588
589
590
591
592
593
594
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
595
596
597
598
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                    )
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
613
614
615
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
658
659
660
661
662
663
664
665
666
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
667
    def __init__(
668
669
670
671
672
673
674
675
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
676
    ):
patil-suraj's avatar
patil-suraj committed
677
678
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
679
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
680
681
682
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
683
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
684
685
686
687
688
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
689
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

704
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
705
706
707
708
709
710
711
712
713
714
715
716
717
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

718
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
719
720
721
722
723
724
725
726
727
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

728
    def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
729
730
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
731
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
732

733
734
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
735
736
737
738
739
740
741
742
743
744
745
746

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
747
        z_q: torch.Tensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

762
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
763
764
765
766
767
768
769
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
770
        z_q: torch.Tensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
771
772
773
774
775
776
777
778
779
780

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
781
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
782
783
784
785
786
787
788
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
789
790
791
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
792

793
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
794
        # make sure sample is on the same device as the parameters and has same dtype
795
        sample = randn_tensor(
Suraj Patil's avatar
Suraj Patil committed
796
797
798
799
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
800
        )
801
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
802
803
        return x

804
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
805
806
807
808
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
Suraj Patil's avatar
Suraj Patil committed
809
810
811
812
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=[1, 2, 3],
                )
patil-suraj's avatar
patil-suraj committed
813
814
815
816
817
818
819
820
821
822
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

823
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
824
825
826
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
Suraj Patil's avatar
Suraj Patil committed
827
828
829
830
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )
patil-suraj's avatar
patil-suraj committed
831

832
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
833
        return self.mean
834
835
836


class EncoderTiny(nn.Module):
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

854
855
856
857
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
858
859
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
860
861
862
863
864
865
866
867
868
869
870
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
Suraj Patil's avatar
Suraj Patil committed
871
872
873
874
875
876
877
878
879
880
                layers.append(
                    nn.Conv2d(
                        num_channels,
                        num_channels,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        bias=False,
                    )
                )
881
882
883
884
885
886
887
888
889

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

890
    def forward(self, x: torch.Tensor) -> torch.Tensor:
891
        r"""The forward method of the `EncoderTiny` class."""
892
        if torch.is_grad_enabled() and self.gradient_checkpointing:
893
894
895
896
897
898
899
900
901
902
903
904
905

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
906
907
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
908
909
910
911
912

        return x


class DecoderTiny(nn.Module):
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

932
933
934
935
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
936
937
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
938
939
        upsampling_scaling_factor: int,
        act_fn: str,
940
        upsample_fn: str,
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
957
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
958
959

            conv_out_channel = num_channels if not is_final_block else out_channels
Suraj Patil's avatar
Suraj Patil committed
960
961
962
963
964
965
966
967
968
            layers.append(
                nn.Conv2d(
                    num_channels,
                    conv_out_channel,
                    kernel_size=3,
                    padding=1,
                    bias=is_final_block,
                )
            )
969
970
971
972

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

973
    def forward(self, x: torch.Tensor) -> torch.Tensor:
974
        r"""The forward method of the `DecoderTiny` class."""
975
976
977
        # Clamp.
        x = torch.tanh(x / 3) * 3

978
        if torch.is_grad_enabled() and self.gradient_checkpointing:
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
            x = self.layers(x)

994
995
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)