autoencoder_tiny.py 15.5 KB
Newer Older
1
# Copyright 2024 Ollin Boer Bohan and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20

import torch

21
22
23
24
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.accelerate_utils import apply_forward_hook
from ..modeling_utils import ModelMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from .vae import DecoderOutput, DecoderTiny, EncoderTiny


@dataclass
class AutoencoderTinyOutput(BaseOutput):
    """
    Output of AutoencoderTiny encoding method.

    Args:
        latents (`torch.Tensor`): Encoded outputs of the `Encoder`.

    """

    latents: torch.Tensor


class AutoencoderTiny(ModelMixin, ConfigMixin):
    r"""
    A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.

    [`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
    all models (such as downloading or saving).

    Parameters:
        in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (`int`,  *optional*, defaults to 3): Number of channels in the output.
        encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
            Tuple of integers representing the number of output channels for each encoder block. The length of the
            tuple should be equal to the number of encoder blocks.
        decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
            Tuple of integers representing the number of output channels for each decoder block. The length of the
            tuple should be equal to the number of decoder blocks.
        act_fn (`str`, *optional*, defaults to `"relu"`):
            Activation function to be used throughout the model.
        latent_channels (`int`, *optional*, defaults to 4):
            Number of channels in the latent representation. The latent space acts as a compressed representation of
            the input image.
        upsampling_scaling_factor (`int`, *optional*, defaults to 2):
            Scaling factor for upsampling in the decoder. It determines the size of the output image during the
            upsampling process.
        num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
            Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
            length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
            number of encoder blocks.
        num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
            Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
            length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
            number of decoder blocks.
        latent_magnitude (`float`, *optional*, defaults to 3.0):
            Magnitude of the latent representation. This parameter scales the latent representation values to control
            the extent of information preservation.
        latent_shift (float, *optional*, defaults to 0.5):
            Shift applied to the latent representation. This parameter controls the center of the latent space.
        scaling_factor (`float`, *optional*, defaults to 1.0):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder,
            however, no such scaling factor was used, hence the value of 1.0 as the default.
        force_upcast (`bool`, *optional*, default to `False`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without losing too much precision, in which case
            `force_upcast` can be set to `False` (see this fp16-friendly
            [AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
    """
94

95
96
97
98
99
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
100
101
102
103
        in_channels: int = 3,
        out_channels: int = 3,
        encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
        decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
104
        act_fn: str = "relu",
105
        upsample_fn: str = "nearest",
106
107
        latent_channels: int = 4,
        upsampling_scaling_factor: int = 2,
108
109
        num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
        num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
110
111
        latent_magnitude: int = 3,
        latent_shift: float = 0.5,
112
        force_upcast: bool = False,
113
        scaling_factor: float = 1.0,
114
        shift_factor: float = 0.0,
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    ):
        super().__init__()

        if len(encoder_block_out_channels) != len(num_encoder_blocks):
            raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
        if len(decoder_block_out_channels) != len(num_decoder_blocks):
            raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")

        self.encoder = EncoderTiny(
            in_channels=in_channels,
            out_channels=latent_channels,
            num_blocks=num_encoder_blocks,
            block_out_channels=encoder_block_out_channels,
            act_fn=act_fn,
        )

        self.decoder = DecoderTiny(
            in_channels=latent_channels,
            out_channels=out_channels,
            num_blocks=num_decoder_blocks,
            block_out_channels=decoder_block_out_channels,
            upsampling_scaling_factor=upsampling_scaling_factor,
            act_fn=act_fn,
138
            upsample_fn=upsample_fn,
139
140
141
142
143
144
        )

        self.latent_magnitude = latent_magnitude
        self.latent_shift = latent_shift
        self.scaling_factor = scaling_factor

145
146
147
148
149
150
151
152
153
        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.spatial_scale_factor = 2**out_channels
        self.tile_overlap_factor = 0.125
        self.tile_sample_min_size = 512
        self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor

154
155
156
        self.register_to_config(block_out_channels=decoder_block_out_channels)
        self.register_to_config(force_upcast=False)

157
    def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
158
159
160
        """raw latents -> [0, 1]"""
        return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)

161
    def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
162
163
164
        """[0, 1] -> raw latents"""
        return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)

165
    def enable_slicing(self) -> None:
166
167
168
169
170
171
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

172
    def disable_slicing(self) -> None:
173
174
175
176
177
178
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

179
    def enable_tiling(self, use_tiling: bool = True) -> None:
180
181
182
183
184
185
186
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.use_tiling = use_tiling

187
    def disable_tiling(self) -> None:
188
189
190
191
192
193
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.enable_tiling(False)

194
    def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
195
196
197
198
199
200
201
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output.

        Args:
202
            x (`torch.Tensor`): Input batch of images.
203
204

        Returns:
205
            `torch.Tensor`: Encoded batch of images.
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        """
        # scale of encoder output relative to input
        sf = self.spatial_scale_factor
        tile_size = self.tile_sample_min_size

        # number of pixels to blend and to traverse between tile
        blend_size = int(tile_size * self.tile_overlap_factor)
        traverse_size = tile_size - blend_size

        # tiles index (up/left)
        ti = range(0, x.shape[-2], traverse_size)
        tj = range(0, x.shape[-1], traverse_size)

        # mask for blending
        blend_masks = torch.stack(
            torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
        )
        blend_masks = blend_masks.clamp(0, 1).to(x.device)

        # output array
        out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
        for i in ti:
            for j in tj:
                tile_in = x[..., i : i + tile_size, j : j + tile_size]
                # tile result
                tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
                tile = self.encoder(tile_in)
                h, w = tile.shape[-2], tile.shape[-1]
                # blend tile result into output
                blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
                blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
                blend_mask = blend_mask_i * blend_mask_j
                tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
                tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
        return out

242
    def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
243
244
245
246
247
248
249
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output.

        Args:
250
            x (`torch.Tensor`): Input batch of images.
251
252

        Returns:
253
            `torch.Tensor`: Encoded batch of images.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        """
        # scale of decoder output relative to input
        sf = self.spatial_scale_factor
        tile_size = self.tile_latent_min_size

        # number of pixels to blend and to traverse between tiles
        blend_size = int(tile_size * self.tile_overlap_factor)
        traverse_size = tile_size - blend_size

        # tiles index (up/left)
        ti = range(0, x.shape[-2], traverse_size)
        tj = range(0, x.shape[-1], traverse_size)

        # mask for blending
        blend_masks = torch.stack(
            torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
        )
        blend_masks = blend_masks.clamp(0, 1).to(x.device)

        # output array
        out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
        for i in ti:
            for j in tj:
                tile_in = x[..., i : i + tile_size, j : j + tile_size]
                # tile result
                tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
                tile = self.decoder(tile_in)
                h, w = tile.shape[-2], tile.shape[-1]
                # blend tile result into output
                blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
                blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
                blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
                tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
        return out

289
    @apply_forward_hook
290
    def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
291
        if self.use_slicing and x.shape[0] > 1:
292
293
294
            output = [
                self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
            ]
295
296
297
            output = torch.cat(output)
        else:
            output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
298
299
300
301
302
303
304

        if not return_dict:
            return (output,)

        return AutoencoderTinyOutput(latents=output)

    @apply_forward_hook
305
    def decode(
306
307
        self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
308
        if self.use_slicing and x.shape[0] > 1:
309
310
311
            output = [
                self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
            ]
312
313
314
            output = torch.cat(output)
        else:
            output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
315
316
317
318
319
320
321
322

        if not return_dict:
            return (output,)

        return DecoderOutput(sample=output)

    def forward(
        self,
323
        sample: torch.Tensor,
324
        return_dict: bool = True,
325
    ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
326
327
        r"""
        Args:
328
            sample (`torch.Tensor`): Input sample.
329
330
331
332
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        enc = self.encode(sample).latents
333
334
335

        # scale latents to be in [0, 1], then quantize latents to a byte tensor,
        # as if we were storing the latents in an RGBA uint8 image.
336
        scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
337
338
339
340
341

        # unquantize latents back into [0, 1], then unscale latents back to their original range,
        # as if we were loading the latents from an RGBA uint8 image.
        unscaled_enc = self.unscale_latents(scaled_enc / 255.0)

342
        dec = self.decode(unscaled_enc).sample
343
344
345
346

        if not return_dict:
            return (dec,)
        return DecoderOutput(sample=dec)