autoencoder_tiny.py 15.7 KB
Newer Older
1
# Copyright 2024 Ollin Boer Bohan and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20

import torch

21
22
23
24
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.accelerate_utils import apply_forward_hook
from ..modeling_utils import ModelMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from .vae import DecoderOutput, DecoderTiny, EncoderTiny


@dataclass
class AutoencoderTinyOutput(BaseOutput):
    """
    Output of AutoencoderTiny encoding method.

    Args:
        latents (`torch.Tensor`): Encoded outputs of the `Encoder`.

    """

    latents: torch.Tensor


class AutoencoderTiny(ModelMixin, ConfigMixin):
    r"""
    A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.

    [`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
    all models (such as downloading or saving).

    Parameters:
        in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (`int`,  *optional*, defaults to 3): Number of channels in the output.
        encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
            Tuple of integers representing the number of output channels for each encoder block. The length of the
            tuple should be equal to the number of encoder blocks.
        decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
            Tuple of integers representing the number of output channels for each decoder block. The length of the
            tuple should be equal to the number of decoder blocks.
        act_fn (`str`, *optional*, defaults to `"relu"`):
            Activation function to be used throughout the model.
        latent_channels (`int`, *optional*, defaults to 4):
            Number of channels in the latent representation. The latent space acts as a compressed representation of
            the input image.
        upsampling_scaling_factor (`int`, *optional*, defaults to 2):
            Scaling factor for upsampling in the decoder. It determines the size of the output image during the
            upsampling process.
        num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
            Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
            length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
            number of encoder blocks.
        num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
            Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
            length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
            number of decoder blocks.
        latent_magnitude (`float`, *optional*, defaults to 3.0):
            Magnitude of the latent representation. This parameter scales the latent representation values to control
            the extent of information preservation.
        latent_shift (float, *optional*, defaults to 0.5):
            Shift applied to the latent representation. This parameter controls the center of the latent space.
        scaling_factor (`float`, *optional*, defaults to 1.0):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder,
            however, no such scaling factor was used, hence the value of 1.0 as the default.
        force_upcast (`bool`, *optional*, default to `False`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without losing too much precision, in which case
            `force_upcast` can be set to `False` (see this fp16-friendly
            [AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
    """
94

95
96
97
98
99
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
100
101
102
103
        in_channels: int = 3,
        out_channels: int = 3,
        encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
        decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
104
        act_fn: str = "relu",
105
        upsample_fn: str = "nearest",
106
107
        latent_channels: int = 4,
        upsampling_scaling_factor: int = 2,
108
109
        num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
        num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
110
111
        latent_magnitude: int = 3,
        latent_shift: float = 0.5,
112
        force_upcast: bool = False,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        scaling_factor: float = 1.0,
    ):
        super().__init__()

        if len(encoder_block_out_channels) != len(num_encoder_blocks):
            raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
        if len(decoder_block_out_channels) != len(num_decoder_blocks):
            raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")

        self.encoder = EncoderTiny(
            in_channels=in_channels,
            out_channels=latent_channels,
            num_blocks=num_encoder_blocks,
            block_out_channels=encoder_block_out_channels,
            act_fn=act_fn,
        )

        self.decoder = DecoderTiny(
            in_channels=latent_channels,
            out_channels=out_channels,
            num_blocks=num_decoder_blocks,
            block_out_channels=decoder_block_out_channels,
            upsampling_scaling_factor=upsampling_scaling_factor,
            act_fn=act_fn,
137
            upsample_fn=upsample_fn,
138
139
140
141
142
143
        )

        self.latent_magnitude = latent_magnitude
        self.latent_shift = latent_shift
        self.scaling_factor = scaling_factor

144
145
146
147
148
149
150
151
152
        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.spatial_scale_factor = 2**out_channels
        self.tile_overlap_factor = 0.125
        self.tile_sample_min_size = 512
        self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor

153
154
155
        self.register_to_config(block_out_channels=decoder_block_out_channels)
        self.register_to_config(force_upcast=False)

156
    def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
157
158
159
        if isinstance(module, (EncoderTiny, DecoderTiny)):
            module.gradient_checkpointing = value

160
    def scale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
161
162
163
        """raw latents -> [0, 1]"""
        return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)

164
    def unscale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
165
166
167
        """[0, 1] -> raw latents"""
        return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)

168
    def enable_slicing(self) -> None:
169
170
171
172
173
174
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

175
    def disable_slicing(self) -> None:
176
177
178
179
180
181
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

182
    def enable_tiling(self, use_tiling: bool = True) -> None:
183
184
185
186
187
188
189
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.use_tiling = use_tiling

190
    def disable_tiling(self) -> None:
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.enable_tiling(False)

    def _tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output.

        Args:
            x (`torch.FloatTensor`): Input batch of images.

        Returns:
208
            `torch.FloatTensor`: Encoded batch of images.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        """
        # scale of encoder output relative to input
        sf = self.spatial_scale_factor
        tile_size = self.tile_sample_min_size

        # number of pixels to blend and to traverse between tile
        blend_size = int(tile_size * self.tile_overlap_factor)
        traverse_size = tile_size - blend_size

        # tiles index (up/left)
        ti = range(0, x.shape[-2], traverse_size)
        tj = range(0, x.shape[-1], traverse_size)

        # mask for blending
        blend_masks = torch.stack(
            torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
        )
        blend_masks = blend_masks.clamp(0, 1).to(x.device)

        # output array
        out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
        for i in ti:
            for j in tj:
                tile_in = x[..., i : i + tile_size, j : j + tile_size]
                # tile result
                tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
                tile = self.encoder(tile_in)
                h, w = tile.shape[-2], tile.shape[-1]
                # blend tile result into output
                blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
                blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
                blend_mask = blend_mask_i * blend_mask_j
                tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
                tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
        return out

    def _tiled_decode(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output.

        Args:
            x (`torch.FloatTensor`): Input batch of images.

        Returns:
256
            `torch.FloatTensor`: Encoded batch of images.
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        """
        # scale of decoder output relative to input
        sf = self.spatial_scale_factor
        tile_size = self.tile_latent_min_size

        # number of pixels to blend and to traverse between tiles
        blend_size = int(tile_size * self.tile_overlap_factor)
        traverse_size = tile_size - blend_size

        # tiles index (up/left)
        ti = range(0, x.shape[-2], traverse_size)
        tj = range(0, x.shape[-1], traverse_size)

        # mask for blending
        blend_masks = torch.stack(
            torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
        )
        blend_masks = blend_masks.clamp(0, 1).to(x.device)

        # output array
        out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
        for i in ti:
            for j in tj:
                tile_in = x[..., i : i + tile_size, j : j + tile_size]
                # tile result
                tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
                tile = self.decoder(tile_in)
                h, w = tile.shape[-2], tile.shape[-1]
                # blend tile result into output
                blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
                blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
                blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
                tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
        return out

292
293
294
295
    @apply_forward_hook
    def encode(
        self, x: torch.FloatTensor, return_dict: bool = True
    ) -> Union[AutoencoderTinyOutput, Tuple[torch.FloatTensor]]:
296
        if self.use_slicing and x.shape[0] > 1:
297
298
299
            output = [
                self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
            ]
300
301
302
            output = torch.cat(output)
        else:
            output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
303
304
305
306
307
308
309

        if not return_dict:
            return (output,)

        return AutoencoderTinyOutput(latents=output)

    @apply_forward_hook
310
311
312
    def decode(
        self, x: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
313
314
315
316
317
        if self.use_slicing and x.shape[0] > 1:
            output = [self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x) for x_slice in x.split(1)]
            output = torch.cat(output)
        else:
            output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

        if not return_dict:
            return (output,)

        return DecoderOutput(sample=output)

    def forward(
        self,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        enc = self.encode(sample).latents
336
337
338

        # scale latents to be in [0, 1], then quantize latents to a byte tensor,
        # as if we were storing the latents in an RGBA uint8 image.
339
        scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
340
341
342
343
344

        # unquantize latents back into [0, 1], then unscale latents back to their original range,
        # as if we were loading the latents from an RGBA uint8 image.
        unscaled_enc = self.unscale_latents(scaled_enc / 255.0)

345
346
347
348
349
        dec = self.decode(unscaled_enc)

        if not return_dict:
            return (dec,)
        return DecoderOutput(sample=dec)