scheduling_dpmsolver_sde.py 27.7 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torchsde

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import is_scipy_available
24
25
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


27
28
29
30
if is_scipy_available():
    import scipy.stats


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get("w0", torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2**63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        self.trees = [
            torchsde.BrownianInterval(
                t0=t0,
                t1=t1,
                size=w0.shape,
                dtype=w0.dtype,
                device=w0.device,
                entropy=s,
                tol=1e-6,
                pool_size=24,
                halfway_tree=True,
            )
            for s in seed
        ]
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
            with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
97
98
99
100
101
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
102
103
104
105
106
107
108
109
110
111
112
113
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
114
115
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
116
117
118
119

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
120
    if alpha_transform_type == "cosine":
121

YiYi Xu's avatar
YiYi Xu committed
122
123
124
125
126
127
128
129
130
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
131
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
132
133
134
135
136

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
137
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
138
139
140
141
142
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
    """
143
144
    DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based
    Generative Models](https://huggingface.co/papers/2206.00364) paper.
145

146
147
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
148
149

    Args:
150
151
152
153
154
155
156
157
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.00085):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.012):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
158
            `linear` or `scaled_linear`.
159
160
161
162
163
164
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
165
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
166
167
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
168
169
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
170
171
172
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
173
        noise_sampler_seed (`int`, *optional*, defaults to `None`):
174
175
176
177
178
            The random seed to use for the noise sampler. If `None`, a random seed is generated.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
179
            An offset added to the inference steps, as required by some model families.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        use_karras_sigmas: Optional[bool] = False,
195
        use_exponential_sigmas: Optional[bool] = False,
196
        use_beta_sigmas: Optional[bool] = False,
197
        noise_sampler_seed: Optional[int] = None,
198
199
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
200
    ):
201
202
203
204
205
206
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
207
208
209
210
211
212
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
213
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
214
215
216
217
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
218
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
219
220
221
222
223
224
225
226
227

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
        self.use_karras_sigmas = use_karras_sigmas
        self.noise_sampler = None
        self.noise_sampler_seed = noise_sampler_seed
228
        self._step_index = None
229
        self._begin_index = None
230
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
231

232
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
233
234
235
236
237
238
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
239
240
241
242
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
243
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
244

245
246
        return indices[pos].item()

247
248
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
249
250
251
252
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
253
        else:
254
            self._step_index = self._begin_index
255

256
257
258
259
260
261
262
263
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

264
265
266
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
267
        The index counter for current timestep. It will increase 1 after each scheduler step.
268
269
270
        """
        return self._step_index

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

289
290
    def scale_model_input(
        self,
291
292
293
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
294
295
296
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
297
298

        Args:
299
            sample (`torch.Tensor`):
300
301
302
303
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

304
        Returns:
305
            `torch.Tensor`:
306
                A scaled input sample.
307
        """
308
309
        if self.step_index is None:
            self._init_step_index(timestep)
310

311
        sigma = self.sigmas[self.step_index]
312
313
314
315
316
317
318
319
320
321
322
        sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma
        sample = sample / ((sigma_input**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
323
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
324
325
326

        Args:
            num_inference_steps (`int`):
327
328
329
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
330
331
332
333
334
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
354
355
356
357
358

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        log_sigmas = np.log(sigmas)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)

359
        if self.config.use_karras_sigmas:
360
361
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
362
363
364
        elif self.config.use_exponential_sigmas:
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
365
366
367
        elif self.config.use_beta_sigmas:
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

        second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)

        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
        second_order_timesteps = torch.from_numpy(second_order_timesteps)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        timesteps[1::2] = second_order_timesteps

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty first order variables
        self.sample = None
        self.mid_point_sigma = None

390
        self._step_index = None
391
        self._begin_index = None
392
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
393
394
        self.noise_sampler = None

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    def _second_order_timesteps(self, sigmas, log_sigmas):
        def sigma_fn(_t):
            return np.exp(-_t)

        def t_fn(_sigma):
            return -np.log(_sigma)

        midpoint_ratio = 0.5
        t = t_fn(sigmas)
        delta_time = np.diff(t)
        t_proposed = t[:-1] + delta_time * midpoint_ratio
        sig_proposed = sigma_fn(t_proposed)
        timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed])
        return timesteps

410
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
411
412
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
413
        log_sigma = np.log(np.maximum(sigma, 1e-10))
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

434
    # copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
435
    def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
436
437
438
439
440
441
442
443
444
445
446
447
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.Tensor(
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

502
503
504
505
506
507
    @property
    def state_in_first_order(self):
        return self.sample is None

    def step(
        self,
508
509
510
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
511
512
513
514
        return_dict: bool = True,
        s_noise: float = 1.0,
    ) -> Union[SchedulerOutput, Tuple]:
        """
515
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
516
        process from the learned model outputs (most often the predicted noise).
517
518

        Args:
519
            model_output (`torch.Tensor` or `np.ndarray`):
520
                The direct output from learned diffusion model.
521
            timestep (`float` or `torch.Tensor`):
522
                The current discrete timestep in the diffusion chain.
523
            sample (`torch.Tensor` or `np.ndarray`):
524
525
526
527
528
529
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
            s_noise (`float`, *optional*, defaults to 1.0):
                Scaling factor for noise added to the sample.

530
531
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
532
533
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
534
        """
535
536
        if self.step_index is None:
            self._init_step_index(timestep)
537
538
539
540
541
542
543

        # Create a noise sampler if it hasn't been created yet
        if self.noise_sampler is None:
            min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
            self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)

        # Define functions to compute sigma and t from each other
544
        def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
545
546
            return _t.neg().exp()

547
        def t_fn(_sigma: torch.Tensor) -> torch.Tensor:
548
549
550
            return _sigma.log().neg()

        if self.state_in_first_order:
551
552
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
553
554
        else:
            # 2nd order
555
556
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

        # Set the midpoint and step size for the current step
        midpoint_ratio = 0.5
        t, t_next = t_fn(sigma), t_fn(sigma_next)
        delta_time = t_next - t
        t_proposed = t + delta_time * midpoint_ratio

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        if sigma_next == 0:
            derivative = (sample - pred_original_sample) / sigma
            dt = sigma_next - sigma
            prev_sample = sample + derivative * dt
        else:
            if self.state_in_first_order:
                t_next = t_proposed
            else:
                sample = self.sample

            sigma_from = sigma_fn(t)
            sigma_to = sigma_fn(t_next)
            sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
            sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
            ancestral_t = t_fn(sigma_down)
            prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
                t - ancestral_t
            ).expm1() * pred_original_sample
            prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up

            if self.state_in_first_order:
                # store for 2nd order step
                self.sample = sample
                self.mid_point_sigma = sigma_fn(t_next)
            else:
                # free for "first order mode"
                self.sample = None
                self.mid_point_sigma = None

609
610
611
        # upon completion increase step index by one
        self._step_index += 1

612
613
614
615
616
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

617
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
618
619
    def add_noise(
        self,
620
621
622
623
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
624
625
626
627
628
629
630
631
632
633
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

634
635
636
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
637
638
639
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
640
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
641
            # add noise is called before first denoising step to create initial latent(img2img)
642
            step_indices = [self.begin_index] * timesteps.shape[0]
643
644
645
646
647
648
649
650
651
652

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps