test_latent_diffusion.py 7.23 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23

from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
24
from diffusers.utils.testing_utils import (
25
    backend_empty_cache,
26
27
28
    enable_full_determinism,
    load_numpy,
    nightly,
29
    require_torch_accelerator,
30
31
    torch_device,
)
32

33
34
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
35

36

37
enable_full_determinism()
38
39


40
41
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LDMTextToImagePipeline
42
43
44
45
46
47
48
49
50
51
52
53
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "negative_prompt_embeds",
        "cross_attention_kwargs",
        "prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
54
55

    def get_dummy_components(self):
56
        torch.manual_seed(0)
57
        unet = UNet2DConditionModel(
58
59
60
61
62
63
64
65
66
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
67
68
69
70
71
72
73
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
74
        torch.manual_seed(0)
75
76
        vae = AutoencoderKL(
            block_out_channels=(32, 64),
77
78
            in_channels=3,
            out_channels=3,
79
80
            down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
            up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
81
82
83
            latent_channels=4,
        )
        torch.manual_seed(0)
84
        text_encoder_config = CLIPTextConfig(
85
86
87
88
89
90
91
92
93
94
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
95
        text_encoder = CLIPTextModel(text_encoder_config)
96
97
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vqvae": vae,
            "bert": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
117
            "output_type": "np",
118
119
        }
        return inputs
120
121

    def test_inference_text2img(self):
122
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
123

124
125
126
127
        components = self.get_dummy_components()
        pipe = LDMTextToImagePipeline(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
128

129
130
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
131
132
        image_slice = image[0, -3:, -3:, -1]

133
        assert image.shape == (1, 16, 16, 3)
134
        expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014])
135

136
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
137

138

139
@nightly
140
@require_torch_accelerator
141
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
142
143
144
    def setUp(self):
        super().setUp()
        gc.collect()
145
        backend_empty_cache(torch_device)
146

147
148
149
    def tearDown(self):
        super().tearDown()
        gc.collect()
150
        backend_empty_cache(torch_device)
151
152

    def get_inputs(self, device, dtype=torch.float32, seed=0):
153
        generator = torch.manual_seed(seed)
154
155
156
157
158
159
160
161
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 6.0,
162
            "output_type": "np",
163
164
165
166
167
168
169
170
171
172
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
173
174

        assert image.shape == (1, 256, 256, 3)
175
176
177
178
179
180
        expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
        max_diff = np.abs(expected_slice - image_slice).max()
        assert max_diff < 1e-3


@nightly
181
@require_torch_accelerator
182
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
183
184
185
    def setUp(self):
        super().setUp()
        gc.collect()
186
        backend_empty_cache(torch_device)
187

188
189
190
    def tearDown(self):
        super().tearDown()
        gc.collect()
191
        backend_empty_cache(torch_device)
192
193

    def get_inputs(self, device, dtype=torch.float32, seed=0):
194
        generator = torch.manual_seed(seed)
195
196
197
198
199
200
201
202
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 6.0,
203
            "output_type": "np",
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3