test_latent_diffusion.py 7.15 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23

from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
24
25
26
27
28
29
30
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    load_numpy,
    nightly,
    require_torch_gpu,
    torch_device,
)
31

32
33
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
34

35

36
enable_full_determinism()
37
38


39
40
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LDMTextToImagePipeline
41
42
43
44
45
46
47
48
49
50
51
52
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "negative_prompt_embeds",
        "cross_attention_kwargs",
        "prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
53
54

    def get_dummy_components(self):
55
        torch.manual_seed(0)
56
        unet = UNet2DConditionModel(
57
58
59
60
61
62
63
64
65
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
66
67
68
69
70
71
72
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
73
        torch.manual_seed(0)
74
75
        vae = AutoencoderKL(
            block_out_channels=(32, 64),
76
77
            in_channels=3,
            out_channels=3,
78
79
            down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
            up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
80
81
82
            latent_channels=4,
        )
        torch.manual_seed(0)
83
        text_encoder_config = CLIPTextConfig(
84
85
86
87
88
89
90
91
92
93
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
94
        text_encoder = CLIPTextModel(text_encoder_config)
95
96
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vqvae": vae,
            "bert": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
116
            "output_type": "np",
117
118
        }
        return inputs
119
120

    def test_inference_text2img(self):
121
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
122

123
124
125
126
        components = self.get_dummy_components()
        pipe = LDMTextToImagePipeline(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
127

128
129
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
130
131
        image_slice = image[0, -3:, -3:, -1]

132
        assert image.shape == (1, 16, 16, 3)
133
        expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014])
134

135
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
136

137

138
@nightly
139
140
@require_torch_gpu
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
141
142
143
144
145
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

146
147
148
149
150
151
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
152
        generator = torch.manual_seed(seed)
153
154
155
156
157
158
159
160
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 6.0,
161
            "output_type": "np",
162
163
164
165
166
167
168
169
170
171
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
172
173

        assert image.shape == (1, 256, 256, 3)
174
175
176
177
178
179
180
181
        expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
        max_diff = np.abs(expected_slice - image_slice).max()
        assert max_diff < 1e-3


@nightly
@require_torch_gpu
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
182
183
184
185
186
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

187
188
189
190
191
192
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
193
        generator = torch.manual_seed(seed)
194
195
196
197
198
199
200
201
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 6.0,
202
            "output_type": "np",
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3